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Summary.11

Many problems in demography require models for partnership formation that separate latent12

preferences for partners from the availability of partners. We consider a model for matchings13

within a bipartite population where individuals have utility for people based on known and14

unknown characteristics. People can form a partnership or remain unpartnered. The model15

represents both the availability of potential partners of different types and preferences of16

individuals for such people. We develop Menzel’s (2015) framework to estimate preference17

parameters based on sample survey data on partnerships and population composition. We18

conduct simulation studies based on new marriages observed in the Survey for Income and19

Program Participation (SIPP) to show that, for realistic population sizes, the model recovers20

preference parameters that are invariant under different population availabilities. We also21

develop confidence intervals that have correct coverage. This model can be applied in family22

demography to understand individual preferences given different availabilities.23

1. Introduction to the Two-sided Matching Market24

Many social processes of pair formation can be viewed as two-sided matching problems.25

These scenarios are prevalent in demography, economics, sociology, political science and26

education, among other fields. For example, heterosexual marriages, job searching, and27

residency assignments for medical school graduates all require members of two disjoint28

groups to mutually consent to form a relationship, or match. Yet the underlying mecha-29

nisms which dictate such processes are often opaque.30

We consider not only how an actor chooses from a set of actors from the opposite side,31

but also the interactions between pairs of actors in a choice situation and the stability32

of the matching result. Actors from opposing sides have to choose each other voluntarily33

in order for a “match” to occur. Of particular interest to many researchers is the role34

individual and societal preferences play in the match-making process.35

These preferences are difficult to discern for multiple reasons. First, it is challenging to36

collect data which records complete information about characteristics of observed pairings37

and the pool of options from which each individual made a selection. Second, the final38

observed matchings are as much a result of the availability of different types of individuals39

as they are of individual preferences. For example, in the heterosexual marriage market,40
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women may prefer men who are highly educated. However, a limit in the supply of men41

with this characteristic means that some women must either choose a partner with lower42

education levels or remain single. It is important to distinguish the effects of preferences43

from those of availability in the final matchings realized. This problem has long been44

recognized in demography without having been satisfactorily resolved (Choo and Siow,45

2006; Pollak, 1986; Schoen, 1981; Pollard, 1997).46

Menzel (2015) proves a series of new mathematical results related to the asymptotic47

distribution of matching outcomes in a two-sided market. In this paper we develop Men-48

zel’s (2015) technical findings for application in demographic studies of two-sided matching49

processes. We propose a revealed preferences model which, given an observed set of sta-50

ble matchings in a large population, uses a re-parametrized version of Menzel’s (2015)51

equations to recover latent preference parameters in the population. These preference52

parameters are used to estimate the total utility of a given partnership, given the char-53

acteristics of the individuals in that partnership. To measure uncertainty of parameter54

estimates, we also propose both an analytical and an empirical approach to computing55

confidence intervals. We conduct simulation studies to show that for large populations,56

the revealed preferences model reconstructs preference parameters that are invariant un-57

der different population availabilities. We also show that the proposed confidence intervals58

achieve appropriate coverage.59

The revealed preferences model can be generalized for applications where an individual60

is permitted to have multiple relationships, as in the case of an employer and its employees61

(Yeung, 2019). However, for the purposes of this paper we focus only on the simpler case62

in which individuals have at most one partner, also known as one-to-one matchings.63

The paper is organized as follows: in Section 2 we provide background information on64

the general two-sided matching problem and review existing literature which addresses65

the challenges of identifying individual preferences in such settings. In Section 3 we detail66

the proposed revealed preferences model and introduce relevant mathematical notation.67

We also address how we overcome challenges in the identifiability of certain preference pa-68

rameters. In Section 5 we discuss parameter inference using a pseudo empirical likelihood69

approach which depends on the sampling process through which the data was obtained.70

We also describe methods of computing standard errors for parameter estimates and con-71

structing confidence intervals. In Section 6, we demonstrate application of the revealed72

preferences model. We provide details on two simulation studies in which we attempt to73

recover known preferences using our proposed method. We present the results of these74

simulation studies in Section 7 which demonstrate the model’s accurate estimation of pa-75

rameters. We conclude in Section 8 with a discussion regarding the implications of the76

results and examples of ways the revealed preferences model might be useful in other fields.77

2. Background78

In most social settings, relationships are constantly shifting over time. For example,79

marriages form and dissolve, employees join and leave firms, and students enroll in and80

drop out of schools. These complex movements are difficult to capture in any data set81

due to their continuous nature. To circumvent this problem, we record the status of all82

partnerships in a given sample at a discrete time point and assume that this organization83

of matches is stable.84

The concept of stable matchings has been previously explored in depth by economists85

and statisticians. Stability is achieved when no two individuals who are not currently86

partnered with each other exist such that both individuals would prefer each other over87

their current partner. Furthermore, no person in a partnership would prefer to be single88

over their current partner. Roth and Sotomayor (1990) show that in large populations,89
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there are various stable matchings that can be realized. By assuming matching stability,90

we are able to assume that the observed data is an accurate reflection of individual and91

societal preferences at that time point.92

One approach to studying two-sided matching scenarios is through the use of two-sided93

discrete choice models, so called because individuals in the population have a set of discrete94

options with which they can match. In general, discrete choice models statistically relate95

the choice decision to the decision maker’s attributes and the attributes of the alternatives96

available. Game theorists and statisticians initially proposed discrete choice models to97

understand agent preferences in one-sided settings. In these scenarios, each individual98

has a set of discrete possible choices. Essentially, there is a “chooser” and a “chosen.”99

The agent in the role of chooser is the sole decision maker of his outcome, although his100

decision may be affected by the decisions of other choosers around him. The one-sided101

discrete choice model estimates the utility the chooser would derive from every possible102

choice in his option set and assumes that agents make the utility-maximizing choice. The103

parameters of interest are the chooser’s preferences.104

However, the traditional one-sided discrete choice model is unsuitable for use in the two-105

sided scenarios. First, as mentioned earlier, the option set of each agent is rarely observed106

completely. Second, the observed matchings in two-sided processes are no longer reflective107

of the preferences of a single individual, as both actors involved in the partnership must108

consent to the partnership. That is, rather than dividing the population into groups of109

“choosers” and “chosens,” both individuals in the partnership are choosers of each other.110

Each member of the partnership aims to maximize his or her own utility, and preferences111

may not necessarily be reciprocal. For example, highly educated women may have a112

preference for highly educated men, but highly educated men may not have a preference113

for highly educated women.114

Logan et al. (2008) and Menzel (2015) both propose a two-sided version of the discrete115

choice model to estimate preference parameters in matching markets. Logan et al. (2008)116

propose a model where disjoint groups in the population have distinct, though possibly117

parallel, utility functions. For example, in the case of heterosexual marriages, all men have118

the same deterministic utility function which depends on the man’s observed characteristics119

x and the characteristics of his partner z, and all women have the same deterministic utility120

function which depends on the woman’s observed characteristics z and the characteristics121

of her partner x. Here, x ∈ X and z ∈ Z. The sample spaces X and Z represent the set122

of possible “types” of men and women, respectively, and may be continuous or discrete.123

Unobserved characteristics are accounted for in the utility by including an individual fixed124

effect term for each actor. By supposing a small population, Logan et al. (2008) are able125

to assume that the full opportunity sets for all actors are known.126

Logan et al. (2008) show that their proposed method for small populations could theo-127

retically be used to compute maximum-likelihood estimates (MLEs) of preference param-128

eters. However, since the computation of the actual MLE is often complex and involves an129

integral which may be intractable, they suggest approximating MLEs using Markov chain130

Monte Carlo (MCMC).131

The approach suggested by Logan et al. (2008) is limited in that the Bayesian inference132

works best for small populations. For example, the authors apply their method to make133

inferences about gender-based marital preferences using data from the National Survey134

of Families and Households (NSFH). With a sample containing 314 men and 360 women,135

they are able to compute parameter estimates for the two-sided model.136

However, the method cannot be used with large sample data sets such as the Survey137

for Income and Program Participation (SIPP), where the number of people of each gender138

exceeds 16,000 or the American Community Survey (ACS), where the number of people of139

each gender exceeds 100,000. In such cases, the calculations required to update parameter140
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estimates in each step of the MCMC process are extremely complex and often intractable.141

Additionally, when large populations with multiple stable matching solutions are studied,142

the posterior distribution of the parameters may have multiple maxima, thereby also ren-143

dering the parameters unidentifiable. Logan et al. (2008) also note limitations in parameter144

identifiability when certain parallel terms are included in the utility functions.145

Menzel (2015) studies the two-sided matching problem with a goal of analyzing the146

distribution of observable outcomes. Here, observable outcomes are the possible matchings147

which may occur. For example, in the case of the marriage market, we may conceptualize148

outcomes as different households. Households are broadly characterized as either “single”149

or “partnered,” depending on whether they hold a single person or a married couple. Each150

single household is further differentiated by the gender and type of the individual living151

in it. Each partnered household is further differentiated by the combination of the type of152

female and the type of male who live in the household. Each household holds either exactly153

one single person of any gender or one married couple, and a household is characterized154

by the type(s) of the individual(s) in it.155

An important result of Menzel (2015) is the derivation of equations which allow asymp-156

totically stable estimates of the proportions of single and partnered households of each type157

in the population. These equations imply that availability of partners and personal pref-158

erences are asymptotically separable in their relationship to the distribution of matching159

outcomes in a large population.160

This is a significant finding because, intuitively, the ability of people to achieve their161

preferred partnership outcome is constrained by the existence of partners. In a small162

population, there is an interaction effect between preferences and partner availabilities163

which influences the observed matching. For example, a man’s preference for a highly164

educated female spouse may result in more females pursuing higher education. We extend165

the results of Menzel (2015) to derive equations which establish a relationship between166

the preferences θ and availabilities of men and women of each type in the population and167

the limiting distribution of households across the possible outcomes. These calculations168

prove that in a large population, the dependency between availability and preferences is169

negligible, and therefore that preferences can be recovered independently of the population170

availability context.171

We propose a subclass of two-sided discrete choice models which we refer to as revealed172

preference models. In this subclass of models we, like Logan et al. (2008) and Menzel173

(2015), focus on bipartite networks. Actors in the network are divided into two distinct174

groups. Edges, which represent partnerships, form only between members of opposing175

groups. Whereas Logan et al. (2008) assume that the full opportunity set of each actor176

is observed, we allow agents of different observed types to have different opportunity sets177

(Yeung, 2019). The goal of our study is to extend Menzel’s (2015) findings to estimate a178

set of latent parameters that describes the decision-making behavior of a given population179

which led to the observed matching outcome. The difficulty of this problem is that the set180

of alternatives for each actor is not generally observed and determined endogenously in the181

market. Our proposed model utilizes key findings from Menzel (2015) about the limiting182

distribution of matchings in a large population and applies them to estimate preference183

parameters based on an observed distribution of matching.184

We note that previous work on decision-making in a matching market have assumed185

transferable utility among agents (e.g. Choo and Siow, 2006). For this paper, we fol-186

low Logan et al. (2008) and Menzel (2015) and assume a non-transferable utility (NTU)187

framework. In NTU setting, an agent’s observed attributes remain unchanged upon match188

formation and dissolution. This assumption is not only realistic, but also greatly simplifies189

the discussion that follows.190
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3. Revealed Preferences Model191

To facilitate our discussion of the revealed preferences model, we will discuss the problem192

within the context of heterosexual marriages within a two-sex population unless otherwise193

noted. In this set-up, we consider a population with two distinct groups, and individuals194

must be either male or female. At any given point in time, individuals have at most195

one partner of the opposite sex, and they also have the outside option to remain single196

(unpartnered). Both the male and the female must agree to the partnership for that197

partnership, or “marriage,” to be observed.198

Individuals evaluate their marital options using a utility function, which contains a199

deterministic and random component. Actors of the same gender are assumed to have200

identically specified utility functions. The random component of the utility function ac-201

counts for the fact that agents’ characteristics are only partially observed. Agents choose202

the partner from available options who will maximize their utility. The latent parameters203

of the utility function which govern this pair formation are commonly known as “prefer-204

ence” parameters in the broad sense that they represent how actors would choose among205

different alternatives if given a choice (Roth and Sotomayor, 1990).206

We consider a population with Nw women and Nm men, so that the total population207

size is N = Nw + Nm. Using the same notation introduced in Section 2, we observe a208

p−vector of covariates x ∈ X on the women and a q−vector of covariates z ∈ Z on the209

men. Let xi and zj denote the observed attributes of woman i = 1, . . . , Nw and man210

j = 1, . . . , Nm, respectively. The equations in this section are written generally so that the211

elements of x and z may be continuous, discrete, or a combination of the two. For ease212

of presentation, however, in later simulation study examples where we apply the revealed213

preferences model, we assume that x and z are discrete and have length 1.214

Actors may perceive potential partners differently based on their own characteristics.215

Thus, the perceived utility gained by partnering with the same individual of the opposite216

sex may differ from one decision maker to the next. However, all actors are assumed to217

choose the partner within their respective choice sets that can provide the maximum gain218

in utility. Given the utility-maximizing behavior of the decision makers, we define the219

utility gained by woman i with observed attributes xi from partnering with man j with220

observed attributes zj as221

Uij = U(xi, zj |θW )︸ ︷︷ ︸
deterministic
component

+ ηij︸︷︷︸
unobserved random

component

(1)

where θW is the set of parameters denoting the woman’s preferences. They can be in-222

dividually specific, and we focus on the case where the parameters are common to all223

women. Similarly, we define the utility gained by man j with observed attributes zj from224

partnering with woman i with observed attributes xi as225

Vji = V (zj , xi|θM )︸ ︷︷ ︸
deterministic
component

+ ζji︸︷︷︸
unobserved random

component

(2)

where θM is the set of parameters representing men’s preferences.226

Following Menzel (2015), we assume that unobserved random components of the utility227

functions as defined in Equations (1) and (2) are independently and identically distributed228

draws from a distribution in the domain of attraction of the extreme-value type-I (Gumbel)229

distribution. This includes Exponential, Gamma, Gaussian, Lognormal, and Weibull.230

Here we will focus on the Gumbel itself, but note our model and methods are more general.231
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3.1. Model specifications232

Having introduced the general setup of a two-sided discrete choice model, we now go into233

detail about model forms for the deterministic and random utility components. We focus234

on the special case where the deterministic components of the utilities in (1) and (2) are235

additive linear functions; however, other choices of utility functions can also be used.‡236

For additive linear utility functions, let237

U(xi, zj |θW ) = θw0 +

Kw∑
k=1

θwkX
k(xi, zj)

V (zj , xi|θM ) = θm0 +

Km∑
k=1

θmkZ
k(xi, zj)

(3)

where xi and zj are vectors measuring observed characteristics of woman i and man j,238

respectively. The woman’s deterministic utility consists of an intercept term θm0 and239

Kw additive linear functions. Each of these functions Xk(xi, zj) represents a portion of240

woman i’s total utility which is derived from her perception of her own characteristics and241

the characteristics of man j. For example, Xk(xi, zj) might be an indicator function that242

represents whether certain observed attributes are identical for the pair (e.g. homophilous).243

The corresponding Km functions for the man’s side are denoted as Zk(xi, zj). Here θW =244

[θw0, θw1, . . . θwKw ]T and θM = [θm0, θm1, . . . θmKm ]T are the preference parameters, which245

are vectors of the scalar coefficients in the utility functions.246

The random component of the utility model accounts for unobserved information about247

individuals in the data which may impact partnership choices. The random terms, are248

assumed to be identically distributed draws from an extreme-value type-I (Gumbel) dis-249

tribution.250

We additionally define the random utility for the choice of remaining single as

Ui0 = 0 + max
k=1,...,Nδ

m

{ηi0,k} (4)

Vj0 = 0 + max
k=1,...,Nδ

w

{ζj0,k}

for females and males, respectively.251

The single household utility specification in Equation (4) implies that the deterministic252

component of the utility for an individual choosing to be unpartnered is 0. The non-253

deterministic component of the single utility function of females is defined as the maximum254

of N δ
m independent draws of ηi,k, the Gumbel-domain-of-attraction distributed random255

term of the male partnered utility function presented in Equation (1). Similarly, the non-256

deterministic component of the single utility function for males is the maximum of N δ
w257

independent draws of ζj,k from Equation (2).258

We choose the hyperparameter δ based on prior expectations of how the proportion259

individuals in the population who are single will change as the market size increases. For260

this model, we set δ = 1/2. This specification ensures that the share of singles in the market261

stays constant as the market grows large (Menzel, 2015, Assumption 2.2). Intuitively,262

increasing the value of δ will make the choice of remaining single more attractive in large263

populations, while decreasing the value of δ makes the single option less attractive.264

3.2. Large population approximation265

Let w(x) be the number of women in the population with characteristics x and m(z) be266

the number of men in the population with characteristics z. For notational convenience,267

let w̄(x) = w(x)/N and m̄(x) = m(x)/N .268

‡See Dagsvik (1994) for latent choice set derivation for other choices of utility functions.
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Consider a population with utilities drawn from the the model (1), (2), (3) and (4).269

Then the stable matching induces a probability distribution over the observed character-270

istics. Consider sampling a random person from the population and their classification271

of matched or single. Let f(x, ∗) and f(∗, z) be the densities of unmatched women of272

type x, and unmatched men of type z, respectively. Let f(x, z) be the joint density of273

the matches between women of observed characteristics x and men of type z. Finally let274

f̄ = {f(x, z), f(x, ∗), f(∗, z)}, x ∈ X , z ∈ Z. Together, f̄ defines a distribution satisfing275

the overall normalization constraint:276 ∫
f(x, z)dxdz +

∫
f(x, ∗)dx+

∫
f(∗, z)dz = 1 (5)

More specifically,

w̄(x) = f(x, ∗) + f(x, �) (6)

m̄(x) = f(∗, z) + f(�, z)

where f(x, �) is the probability of being partnered:

f(x, �) =

∫
f(x, z)dz

f(�, z) =

∫
f(x, z)dx

A major result of Menzel (2015) is that, under mild regularity conditions, if the pop-277

ulation size is large and the matching is stable, the frequencies approximately satisfy the278

relations:279

f(x, z) = 2eW (x,z|β)f(x, ∗)f(∗, z) ∀x, z (7)

where
W (x, z|β) = U(x, z|θW (β)) + V (z, x|θM (β)), ∀x ∈ X , z ∈ Z

is the sum of the deterministic components of the utilities and θW (β) and θM (β) are
functions such that β parameterizes W (x, z|·). The solution must satisfy the population
equilibrium conditions on the parameter values, β:

f(x, �)
f(x, ∗)

=

∫
eW (x,s|β)f(∗, s)ds ∀ x (8)

f(�, z)
f(∗, z)

=

∫
eW (s,z|β)f(s, ∗)ds ∀ z

The typical number of stable matchings increases exponentially with the population size.280

However, all these stable matching have the same limiting probability distribution over281

the observed characteristics (f̄).282

Together, (6) and (7) make it possible to obtain estimates β̂ of the preference param-283

eters.284

4. Data285

The analysis depends on the sampling design that produces the data. Let c(x, ∗) and286

c(∗, z) be the design-based estimates of the numbers of unmatched women of type x, and287

unmatched men of type z in the population, respectively. Let c(x, z) be the design-based288

estimates of the number of matches between women of observed characteristics x and289

men of type z in the population. Finally, let c̄ = {c(x, z), c(x, ∗), c(∗, z)}, x ∈ X , z ∈ Z.290

Together, c̄ defines the empirical version of the distribution f̄ . Our method can be applied291
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with a broad range of complex survey sampling designs, with the requirement that they292

produce estimates of f̄ . Here we focus on the situation where the data are a probability293

sample of the individuals in a population where the weights are wwi for the ith woman294

and wmj for the jth man. It is presumed that the weights are normalized via post-295

stratification to sum to population quantities over the covariates in the model. It is296

also presumed that the characteristics of the partner, if any, of sampled individuals are297

available. We take a super population framework, where the population is sampled from a298

super population process. Specifically, the N members of the population are independent299

and identical draws from a super population stochastic process. The sample of women300

is denoted {xi, zi, wwi }
nw
i=1, where zi are the characteristics of the women’s partner, if any.301

If the sampled women is single formally set zi to ∗. Similarly, the sample of men is302

{zj , xi, wmj }
nm
j=1. In our analysis we use the standard Hájek estimator (Hájek, 1971).303

If the population size N is large and the sample fraction is not high, we will focus304

inference on the near sufficient statistics c̄ for the distribution f̄ . In our experience, we305

offer as benchmarks N > 7000, n < N/2 as sufficient to have this approximation be very306

accurate. We provide evidence for these guidelines in Section 6.307

4.1. Parametrization and Identifiability308

Following Logan et al. (2008), we say that a parametrization of the model, β ∈ B, is
large population identifiable if for each β1, β2 ∈ B with β1 6= β2 there exists a state of the
covariates x and z such that

P (c̄|β1) 6= P (c̄|β2)

Based on equations (7) and (8), and the expression

W (x, z|β) = U(x, z|θW (β)) + V (z, x|θM (β)), ∀x ∈ X , z ∈ Z

only the sum of the partnered individuals’ utilities is identifiable, and the individual com-
ponents U(x, z|θW ) and V (z, x|θM ) are not. For example, suppose that men and women
both have a preference for homophily, meaning that an individual gains additional utility
from a partner of the same “type” as him- or herself. The deterministic component of the
utility for woman i when she partners with man j is given by

U(xi, zj |θw) = θwX(xi, zj),

where X(xi, zj) = I{xi = zj} is an indicator function that equals 1 if woman i and man
j have the same observed characteristics and 0 otherwise. Furthermore, the deterministic
utility for man j when he partners with woman i is given by

V (zj , xi|θm) = θmZ(zj , xi),

where Z(zj , xi) = I{xi = zj} is also an indicator function that equals 1 if man j and
woman i have the same observed characteristics and 0 otherwise. Then, it is always true
that X(xi, zj) = Z(zj , xi). In this case where individuals show preference for homophily,
the deterministic value of the total household utility is

W (xi, zj |β) = U(xi, zj |θw) + V (zj , xi|θm)

= θwX(xi, zj) + θmZ(zj , xi)

= (θw + θm)I{xi = zj}
= βI{xi = zj}. (9)

We see that while θw and θm are not separately identifiable, their sum β = θw + θm is.
More broadly, U(x, z|θW ) and V (z, x|θM ) may not be separably identifiable when they
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are additive linear functions as in Equation (3) and include parallel terms. In general, let
θW (β) and θM (β) be functions such that

W (x, z|β) = U(x, z|θW (β)) + V (z, x|θM (β)), ∀x ∈ X , z ∈ Z

For example, if the utility functions are additive and linear (Equation 3), β = θW (β) +309

θM (β). In this case, W (x, z) can be parameterized in terms of β. We will consider310

paramatrizations where β is identifiable. To emphasize the relationship between β, θW ,311

and θM , we refer to the gender-specific preference parameters as θW (β) and θM (β) for the312

rest of this paper.313

4.2. Reparametrization of the model314

We can reparametrize these expressions to improve interpretability and ease computation.
Define parameters g(x, ∗) and g(∗, z) via the equations:

f(x, ∗) =
w̄(x)eg(x,∗)

(1 + eg(x,∗))
(10)

f(∗, z) =
m̄(z)eg(∗,z)

(1 + eg(∗,z))

so that g(x, ∗) and g(∗, z) both have range the real line. We can interpret g(x, ∗) as the
log-odds that a women with characteristics x is single. Similarly, we can interpret g(∗, z)
as the log-odds that a men with characteristics z is single. We will use g(x, ∗) and g(∗, z)
in place of f(x, ∗) and f(∗, z) to ease computation and interpretability. Note that

f(x, �) =
w̄(x)

(1 + eg(x,∗))

f(�, z) =
m̄(z)

(1 + eg(∗,z))

so that (6) is automatically satisfied and (7) becomes315

f(x, z) = 2
eW (x,z)+g(x,∗)+g(∗,z)

[1 + eg(∗,z)][1 + eg(x,∗)]
w̄(x)m̄(z) ∀x, z (7’)

so that

2
eW (x,z)+g(x,∗)+g(∗,z)

[1 + eg(∗,z)][1 + eg(x,∗)]
∀x, z

expresses the preferences related component of the model. In this parametrization (8)
becomes

e−g(x,∗) =

∫
eW (x,s)+g(∗,s)m̄(s)

1 + eg(∗,s)
ds ∀ x (8’)

e−g(∗,z) =

∫
eW (x,s)+g(s,∗)w̄(s)

1 + eg(s,∗)
ds ∀ z

5. Inference316

Estimates of w(x) and m(z) may be available from auxiliary surveys. Otherwise, we can317

use the data alone and standard design-based estimates of w(x) and m(z), written as w̃(x)318

and m̃(z), respectively. Note that these represent availabilities and do not depend on the319

preference parameters. The parameters are then ψ = (β, {g(x, ∗)}x∈X , {g(∗, z)}z∈Z).320
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5.1. Pseudo Likelihood Approach321

Had we observed the entire population, the likelihood for ψ would involve the complex
dependencies between the individual choices and matchings in the population. Each of
the matchings is interdependent. Our approach is to use as a surrogate for the likelihood
for ψ, one based on the likelihood of the observed frequencies of pairings by covariates, c̄,
and the model (7) and (8). Specifically, the population likelihood for ψ is:

log-likpop(ψ|{xi, zi, wwi }
Nw
i=1, {zj , xi, w

m
j }

Nm
j=1) =

Nw∑
i=1

log f(xi, zj) +

Nm∑
j=1

log f(xi, zj) (11)

However, we do not observe the full population and so we approximate the population
likelihood by the design-based estimator:

p-log-lik(ψ|{xi, zi, wwi }
nw
i=1, {zj , xi, w

m
j }

nm
j=1) (12)

=
∑
x∈X

∑
z∈Z

c(x, z) log f(x, z) +
∑
x∈X

c(x, ∗) log f(x, ∗) +
∑
z∈Z

c(∗, z) log f(∗, z)

This approach is based on the arguments of Godambe and Thompson (1986). The log-322

likelihood (12) can be written in terms of g(x, ∗) and g(∗, z) using (7’).The values w̃(x)323

and m̃(z) replace w(x) and m(z) in these expressions.324

To obtain estimates, the pseudo log-likelihood can be maximized subject to the con-325

straints expressed in (8’) to produce the pseudo maximum likelihood estimator (PMLE),326

ψ̂. This was achieved via a sequential quadratic programming (SQP) algorithm for non-327

linearly constrained gradient-based optimization (Kraft, 1994; Johnson, 2020). We note328

that there are many possible survey sampling schemes in use, and the sampling could329

be at the individual level or at the household level. These alternative survey designs are330

straightforward to incorporate into the above equations and we do not explicate it here.331

5.2. Measuring uncertainty of the estimates332

Once we obtain the parameter estimates ψ̂, a natural next step is to measure their uncer-333

tainty.334

The covariance matrix of the estimates can be approximated by a standard Central
Limit Theorem argument. The pseudo log-likelihood function, argumented by the con-
straints, is

log-likA(ψ|{xi, zi, wwi}nwi=1, {zj , xi, wmj}
nm
j=1) (13)

= p-log-lik(ψ|{xi, zi, wwi}nwi=1, {zj , xi, wmj}
nm
j=1) +

|X |+|Z|+1∑
k=1

λkhk(ψ) (14)

and its Hessian is

E
(
∂2log-likA
∂ψ∂ψ′

)
=

(
H J
JT 0

)
(15)

where H is the Hessian of the pseudo log-likelihood with ijth element E
(
∂2p-log-lik
∂ψ∂ψ′

)
and335

J is the matrix Jacobian of the constraints with kjth element ∂hk(ψ)
∂ψ . The estimate of the336

(asymptotic) covariance matrix of pseudo MLE of ψ is the (1,1) block of the Moore-Penrose337

inverse of this matrix (Hartmann and Hartwig, 1996).338

The accuracy of the estimate of the covariance matrix depends on the application-339

specific accuracy of the various approximations. Thus, the analytically estimated stan-340

dard errors may not accurately reflect the standard errors of parameter estimates that are341
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observed over repeated samples from the same population. As an alternative, we propose342

estimating standard errors empirically using bootstrap procedures. We first sample the343

households of k individuals with repetition from the observed sample, where k is equal to344

the number of directly sampled individuals in the original sample. We repeat this process345

b times, so that we have b sets of bootstrapped samples. We fit the revealed preferences346

model to each of the b samples and obtain the bootstrapped parameter estimates for a347

single parameter ψ, which we denote as ψ∗ = [ψ∗(1),ψ
∗
(2), . . . ,ψ

∗
(b)]. The empirically esti-348

mated standard error of ψ̂, denoted as ŝeψ̂, is equal to standard error of the bootstrapped349

parameter estimates ψ∗.350

We also consider various methods employing bootstrap procedures to compute confi-
dence intervals for each parameter. The percentile bootstrap, is the most straightforward of
these methods. We denote ψ∗(α) as the α percentile of the bootstrap parameter estimates

ψ∗. The (1− α)% percentile bootstrap confidence interval for parameter ψ:

(ψ∗(α/2),ψ
∗
(1−α/2)).

The second method we employ is the basic bootstrap confidence interval. For the
parameter ψ with estimate ψ̂, we use the basic bootstrap procedure to obtain a (1 − α)
confidence interval:

(2ψ̂ −ψ∗(1−α/2), 2ψ̂ −ψ
∗
(α/2)).

We also consider a modified version of the studentized t bootstrap confidence interval.
Here we obtain a (1− α)% confidence interval as:

(ψ̂ − t∗(1−α/2)ŝeψ̂, ψ̂ − t
∗
(α/2)ŝeψ̂).

We test the performances of the analytical confidence intervals as well as those of351

all three proposed bootstrap confidence interval methods in Section 7.3 as part of our352

simulation studies.353

6. Simulation Studies of Model and Inferential Accuracy354

In this section we describe two simulation studies which demonstrate that the revealed355

preferences model is able to accurately estimate the underlying preferences which partially356

motivate matching outcomes in a population. The basic procedure for both simulation357

studies is the same. We begin by assuming a heterosexual marriage market in which males358

and females base partnership decisions on their own education level and the education of359

prospective spouses, as well as some other unobserved characteristics. We then simulate360

a population from an availability scenario with a known marginal distribution of gender361

and education and create stable partnerships among the simulated individuals based on362

utilities computed using known preference parameters β. We fit the revealed preferences363

model to the observed matching outcomes in the simulated population and show that the364

model reconstructs the original preference parameters.365

To achieve a stable matching in a simulated population, we would ideally use the366

Gale-Shapley algorithm. However, a large amount of memory and computational power367

is required to create stable partnerships for large population sizes (greater than 7,000),368

since the household utility matrices {Wij}Nw×Nm and {Mij}Nm×Nw must be calculated369

for all potential pairings. In Simulation study B, we suppose a population whose size370

is arbitrarily large. In this case, rather than implementing the Gale-Shapley algorithm371

to achieve a stable matching, we approximate the distribution of household types in the372

outcome and estimate preference parameters based on the large population approximation373

(Equation (7)). In general, we suggest using the large population approximation rather374

than replicating the actual matching process when working with simulated populations375
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with more than 7,000 individuals. To show that the revealed preferences model can still376

recover true parameters given an observed, rather than approximated, distribution of377

outcomes, we also run a second simulation study, which we call Simulation study A, under378

a small population setting such that the population size is N = 7, 000.379

For each simulation study, we consider three distinct availability scenarios with differing380

marginal availabilities from which populations are simulated. These scenarios are described381

further in Section 6.1. Additionally, for each availability scenario, we consider two different382

specifications of the deterministic total partnership utility W (xi, zj |β). These models are383

detailed in Section 6.2.384

Both the known marginal availability distributions of the availability scenarios and the385

known underlying preference parameters β0 for each model specification are determined386

based on data from the 2008 Survey on Income and Program Participation (SIPP), which387

has been made publicly available by the United States Census Bureau (U.S. Bureau of the388

Census, 2020b,a). The 2008 SIPP is a nationally representative panel study that followed389

individuals in sampled households from 2008 through 2012. Individuals responded to a set390

of core questionnaires administered every 4 months and in 2009, individuals over the age391

of 15 answered a series of supplemental survey questions on their marital history, and, if392

currently married, the date their most recent marriage began.393

We limit the analytic sample to individuals 18-59 years old who at wave 2 had mar-394

ried in the past year or were not currently married and were living in households that395

responded to Waves 1 and 2 of the 2008 SIPP Panel as well as the marital history topical396

module administered at the Wave 2 interview. We focus on new marriages so as to measure397

preferences at the time the marriage was initiated and to avoid bias due to marital disso-398

lution, remarriage, or educational upgrading (Schwartz and Mare, 2005; Kalmijn, 1994).399

Within a given year, entering into a marriage is relatively rare, only 5% of individuals in400

our analytic sample entered a new marriage and thus preferences for marriage are negative401

when we run the revealed preferences model in Section 7.402

The maximum education level attained by each individual is a categorical variables403

coded as 1 for less than a high school education, 2 for a high school degree, 3 for some404

college, and 4 for a bachelors degree or beyond. The education level of female i is stored405

as xi and the education level of male j is stored as zj .406

6.1. Description of Availability Scenarios407

We assume three separate availability scenarios, referred to hereafter as availability sce-408

nario 1, availability scenario 2 and availability scenario 3. The marginal availabilities in409

each population are provided fully in Table 2. For each setting we describe a popula-410

tion generating process. One of these scenarios is factual (a populations like the 2008411

SIPP), and the two others are counter-factual (i.e., changing the population composition412

while retaining preferences). In the latter two cases, we reconstruct matchings using the413

preferences of the 2008 SIPP sample while changing the availabilities of the population.414

SG: [Check placement of Table 1.]415

Table 1: The three availability scenarios

Availability Source of Type
scenario availability distribution

1 2008 SIPP full sample Total U.S. population in 2008
2 2008 SIPP non-Hispanic

Black sample
A realistic sub-population availability

3 Artificial An extremely mismatched population
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Table 2: Gender and Education Distributions under the three availability scenarios

Males Females
Education Level % Population % of Males % Population % of Females

Availability scenario 1
1 (< high school) 7.4 14.5 5.3 10.9
2 (high school) 14.5 28.5 11.2 22.8
3 (some college) 19.5 38.4 21.0 42.9
4 (≥ bachelors) 9.5 18.6 11.5 23.4
Total 50.9 100.0 49.1 100.0

Availability scenario 2
1 (< high school) 7.2 17.1 7.1 12.3
2 (high school) 13.8 33.0 15.3 26.4
3 (some college) 15.9 37.8 25.4 43.7
4 (≥ bachelors) 5.1 12.1 10.2 17.6
Total 42.0 100.0 58.0 100.0

Availability scenario 3
1 (< high school) 45.0 60.0 2.5 10.0
2 (high school) 15.0 20.0 2.5 10.0
3 (some college) 7.5 10.0 5.0 20.0
4 (≥ bachelors) 7.5 10.0 15.0 60.0
Total 75.0 100.0 25.0 100.0

Availability scenario 1 utilizes the gender and education distributions of the overall416

population based on the restricted 2008 SIPP sample. In this availability scenario, about417

49.1% of individuals are women and 51.9% are male.418

Availability scenario 2 has the same marginal distribution of education and availability419

as the non-Hispanic Black population in the restricted 2008 SIPP data. In Availability420

scenario 2, about 58.0% of the individuals are females and 42.0% are males, which reflects421

a significant gender skew not seen in Availability scenario 1. In both Availability scenarios422

1 and 2, women are more likely to have completed any college (education category 3 or423

higher) and are less likely to have less than a high school degree (education category 1).424

Availability scenario 3 is not based on any known sample and is extremely unrealistic.425

25% of individuals are female, and 75% of individuals are male. Females tend to have high426

education levels, with 60% categorized as having education level 4 and 20% categorized as427

education level 3. Conversely, men are more likely to have lower education levels, with 60%428

being categorized as having education level 1 and 20% being categorized as education level429

2. This asymmetry in gender and education availabilities is highly unusual in observed430

populations and creates incongruity in the types of partners who are preferred versus those431

who are available. The study of Availability scenario 3 is to test if the revealed preferences432

model can successfully recovers preference parameters even in cases where the availability433

of individuals in the population is highly skewed.434

6.2. Utility model specification435

For each availability scenario, we test the performance of the revealed preferences model436

under two different model specifications. The testing procedure for each model specifi-437

cation is similar. We first obtain a set of preference parameters β0 which we assume is438

the underlying truth. This is done by running the specified model on the 2008 SIPP data439

and calculating parameter estimates β̃. We assume that these estimates are equivalent to440

the true preference parameters of individuals simulated from every availability scenario,441

so that β0 = β̃. In each simulated population, the known preferences β0 are applied to442
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calculate total household utility for every potential partnership and form a stable match-443

ings. We fit the revealed preferences model on the observed stable matching outcome from444

the simulated population and compare the parameter estimates β̂ to the underlying true445

preferences β0.446

We first consider a model specification assuming that the utility a woman derives from447

a partnership is based on her own education level and whether her partner shares that448

same education level. There is a corresponding utility function for males. We refer to this449

as a type-based match model, because preference is based on an individual’s own type and450

whether or not their partner’s type matches theirs. The set of parameters for this model451

is denoted as βmatch.452

Let
Xk(xi, zj) = Zk(zj , xi) = I{xi = zj = k}.

The deterministic component of woman i’s utility when she is partnered with man j is

U(xi, zj |θW (βmatch)) = θw0 +

4∑
k=1

θwkX
k(xi, zj). (16)

Similarly, the deterministic component of the utility of man j when partnered with woman
i is

V (zj , xi|θM (βmatch)) = θm0 +

4∑
k=1

θmkZ
k(zj , xi). (17)

Then, the total utility of woman i and man j if they partnered with each other is given
by the sum of Equations 16 and 17:

Wij(xi, zj |βmatch) = θw0 + θm0 +

4∑
k=1

(θwk + θmk)I{xi = zj = k}

= β0 +

4∑
k=1

βkI{xi = zj = k}, (18)

where βt = θwt + θmt.453

The second model we consider is a modified version of the saturated mix model, which
includes every possible first-order term. In the saturated mix model, women and men
both derive a different utility from each possible combination of education levels in the
marriage. The full set of parameters is denoted by βmix. In this case, woman i’s utility
from partnering with man j is

U(xi, zj |θW (βmix)) = θw0 +

4∑
p=1

4∑
q=1

θw(p,q)X
(p,q)(xi, zj), (19)

where
X(p,q)(xi, zj) = I{xi = p, zj = q}.

Similarly, man j’s utility for partnering with woman i is

V (zj , xi|θM (βmix) = θm0 +

4∑
q=1

4∑
p=1

θm(p,q)Z
(q,p)(xi, zj), (20)

where
Z(q,p)(zj , xi) = I{zj = q, xi = p}.



Revealed Preference Models for Pairings 15

We are able to remove the intercept terms θm0 and θw0 in Equations 19 and 20 because
they are constant values added to the matching utility of every individual. Thus, the total
utility of the individuals in a marriage is

W (xi, zj |βmix) =
∑
p,q

βp,qI{xi = p, zj = q}. (21)

The term βp,q is the coefficient to an indicator which equals 1 if the household pairing454

consists of a woman of type p and a man of type q, and 0 otherwise. The full mix model455

consists of P ×Q first-order parameters, where there are P possible types for women and456

Q possible types for men.457

Out of the 21,077 households in the SIPP analytic sample, there is 1 household which458

contains a woman with education level 1 and a man with education level 4, and 1 household459

which contains a woman with education level 4 and a man with education level 1. The460

low counts make estimation of the θ1,4 and θ4,1 parameters difficult, as the joint utility461

of such households is perceived as effectively negatively infinite. To faciliate estimation462

in these cases, we consider pairings between a woman with education level 1 and a man463

of education level 4 to have equal utility to a pairing between a woman with education464

level 2 and a man of education level 4. This “reduces” the β1,4 and β2,4 parameters to a465

β1 or 2,4 parameter. Similarly, we can equate pairings between a woman with education 4466

and man with education 1 to pairings between a woman with education 4 and a man with467

education 2, so that β4,1 and β4,2 are replaced by β4,1 or 2. Thus, rather than using the468

fully saturated model with 16 parameters to estimate, we consider a reduced mix model469

with only 14 parameters.470

7. Results471

7.1. Simulation study A: A Small Population472

In this simulation study, we simulate 1,000 populations of size N = 7, 000 from each473

availability scenario. We use the Gale-Shapley algorithm to perform stable matching on474

the individuals in each simulated population. The utility derived from each potential475

partnership is calculated based on β0 and an extreme-value Type-I distributed random476

error term. The utility a woman achieves by staying single is equal to maximum value of477 √
Nw random draws from an extreme-value Type-I distribution.478

The plots in Figure 1 show the distribution of the 1,000 parameter estimates for each479

combination of availability scenario and revealed preferences model specification. The red480

lines in the plots represent the true values β0 which induced the Gale-Shapley matchings.481

The box plots in Figure 1 were constructed to include negatively infinite estimates via a482

point mass at value -6 with area proportional to the number of negative infinite estimates.483

This was done to ensure they were recognized in the results.484

The means and standard errors of parameter estimates for the match and reduced mix485

models are presented in Tables 3 and 4, respectively, under Appendix A. We note that486

although availability of individuals differs between Availability scenario 1 and Availability487

scenario 2, under both model specifications the revealed preferences model produces esti-488

mates of the true preference parameters which are about equal in accuracy and precision.489

Based on the small population plots in Figure 1, the median estimates of all reduced490

mix model parameters except β1 or 2,4 appear to align with the true values fairly well in491

all availability scenarios. Furthermore, in Availability scenarios 1 and 2, the estimates for492

all parameters, with the exception of β1 or 2,4, resemble a normal distribution.493

We note that for all the availability scenarios, the distribution of β̂1 or 2,4 displays a494

right skew. When the population has very few or no households of a certain type, the495

model estimates the total utility of such a household as very negative, if not infinitely so.496
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Fig. 1: Distribution of parameter estimates in Simulation study A (small populations);
1,000 simulations, N = 7, 000

In our implementation of this model, we impose an upper bound of 6 and a lower bound497

of -6 on all parameters. The high frequency of extremely negative values (< 4) in the498

parameter estimates of β1 or 2,4 indicate that in that specific population, there were very499

few or no households which contained a matching between a woman with education level500

1 or 2 and a man with education level 4.501

We note that the occurrence of highly negative estimates of β1 or 2,4 increases as the502

gender and education distributions become more skewed. Furthermore, in Availability503

scenario 3, where men far outnumber women, the estimates of β1,3 and β2,3 also develop504

a right skew. Table 4 in Appendix A shows that the standard errors of these parameter505
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Fig. 2: Distribution of parameter estimates in Simulation study B (large populations);
1,000 simulations, N = 300 million

estimates tends to increases as the population becomes more skewed.506

The means and standard errors of the match model parameter estimates are provided507

in Table 3 of Appendix A. We note that although availability of individuals differs between508

the three availability scenarios, the revealed preferences model produces estimates of the509

true preference parameters which are comparable in accuracy and precision.510

7.2. Simulation study B: A Large Population511

In this simulation study, we simulate samples from 1,000 large populations using the512

specified availabilities, each with a nominal size of N = 300 million. The results are very513
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robust to the population size as long as it is modestly large (e.g., N > 7000). We choose514

to study large populations as they are typical in demography.515

We employ a large population approximation of stable matching outcomes in the simu-516

lated population that would be observed if individuals had true preferences β0. The plots517

in Figure 2 show the distribution of the 1,000 parameter estimates β̂ for each combination518

of simulating availability scenario and revealed preferences model specification. The red519

lines in the plots represent the true values β0 which we are attempting to recover.520

The first column of Figure 2 shows the distributions of the parameter estimates under521

the type-based match model given large simulated population. The means and standard522

errors of the match model parameters are presented in Table 5. To compute these numer-523

ical summaries, we again exclude the negative infinite parameter estimates.524

In all three availability scenarios, we observe that the mean estimate for each parameter525

is very close to the true value. We also note that when simulating from Availability526

scenarios 1 and 2, the standard errors of the parameter estimates stay about the same.527

However, the standard error nearly triples when the simulated populations are drawn from528

Availability scenario 3.529

The second column of Figure 2 shows the distributions of the parameter estimates un-530

der the reduced mix model when the simulated population size is large. Due to space531

constraints, we relegate Table 6, which shows the means and standard errors of the pa-532

rameter estimates, to Appendix A. The revealed preferences model recovers the true pref-533

erence parameters βmix,0 for all availability scenarios. Furthermore, the standard errors of534

all parameter estimates except β̂4,1 or 2 stay similar across the availability scenarios. The535

standard error of β̂4,1 or 2 is 0.388 and 0.385 for Availability scenarios 1 and 2, respectively,536

but more than doubles to 0.890 in the Availability scenario 3 setting.537

7.3. Confidence intervals and coverage probabilities538

To supplement the findings in Simulation study B, we calculate 95% confidence intervals539

for parameter estimates based on simulations with population size N = 300 million and540

compare the empirical coverage rates of the true parameter values to the 95% threshold.541

To calculate empirical coverage rates, we simulate S = 200 large populations from542

scenario 1. For each simulated population, we fit the reduced mix model and produce543

analytical 95% confidence intervals based on the approximated Hessian matrix, as detailed544

in Section 5.2. We additionally implement the basic, percentile, and modified studentized545

t bootstrap methods also discussed in Section 5.2 to construct empirical 95% confidence546

intervals. An illustration of the coverage results from a single set of 200 simulations are547

presented in Appendix B.548

The process of simulating 200 populations and constructing confidence intervals for549

each simulation was repeated 40 times, so that we observed an empirical coverage rate550

across 200 simulations 40 times. The analytical confidence intervals appeared to be the551

most volatile; across the 14 parameters estimated in the reduced mix model, the mean552

coverage rate of the analytical confidence intervals ranged from 10 to 90%.553

We show the mean coverage rates of the reduced mix model parameters by the bootstrap554

confidence intervals in Figure 3. The dotted black line at 0.95 denotes the 95% threshold555

we aim to achieve. For all parameters other than β1 or 2,4 and β4,1 or 2, the mean coverage556

rates from all three confidence interval types are generally close to 95%. We note, for557

example, that the mean coverage rate of the confidence intervals for these parameters558

ranges between 91.7% and 96.2%.559

All three bootstrap methods have relatively poor coverage probabilities of β1 or 2,4 and560

β4,1 or 2. While the studentized t method has a mean coverage probability of 90.2% for561

β1 or 2,4, the remaining mean coverage probabilities for these two parameters all fall below562

90%.563
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Fig. 3: Mean empirical coverage probability by bootstrap confidence intervals for reduced
mix model parameters (40 sets of 200 simulations from Availability scenario 1)

The studentized t interval consistently produces the highest mean coverage rates among564

the three methods and is also the closest to the 95% threshold. The percentile method565

generally has the weakest performance of the bootstrap methods.566

The mean coverage rates shown in Figure 3 were produced based on populations sim-567

ulated from Availability scenario 1. We repeated the procedure to evaluate confidence568

interval coverages using populations simulations from Availability scenario 2. We found569

no evidence that the change in population availabilities impacted the coverage rates of the570

bootstrap confidence intervals.571

We also repeated this process to evaluate the performance of confidence intervals for572

match model parameters. In this case, we found that the analytical confidence intervals573

were two to three times wider than the student t intervals and captured the true value 100%574

of the time, indicating overcoverage. We again observed that the studentized t confidence575

intervals consistently achieved the highest coverage rate of the bootstrap procedures. The576

basic and percentile bootstrap 95% confidence intervals underperformed slightly, generally577

falling between 90% and 94% coverage. A plot of mean coverage rates by analytical578

and bootstrap confidence intervals for the match model is provided in Figure 7 under579

Appendix B.580

8. Discussion581

The ability to extract preferences separably from availabilities is a key feature of the582

revealed preferences model which we propose in this paper. In Simulation study A we583

simulate a small population (N = 7, 000) and run the Gale-Shapley algorithm to obtain a584

stable matching. Given an observed distribution of outcomes rather than just an approxi-585

mation, we are still able to compute parameter estimates which are very close to the true586
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values.587

In Simulation study B, we simulate an large population and determine an approxi-588

mate stable matching from which we sample matching outcomes. We maximize a pseudo589

likelihood to obtain parameter estimates and show that the method accurately recovers590

true preference parameter values even under various different availabilities of prospective591

partners. In both simulation studies, the distribution of the parameter estimates appears592

Gaussian in most cases. The standard errors decrease when the population size is larger,593

as in Simulation study B.594

We note that when there are very few or none of a certain type of matching outcome,595

the total utility of such a household is assessed to be negative infinity. As an example,596

we refer to the estimates of β1 or 2,4 in Simulation study B, shown in the first column of597

Figure 2. If we observed no pairings where a woman has education level 1 or 2 and the man598

has education level 4, then the estimate negatively infinity. This is a form of separation599

as also seen for generalized linear models (Heinze and Schemper, 2002). The the high600

concentration of parameter estimates for β1 or 2,4 around -6 correctly captures this and601

reflects the lower utility corresponding to such household pairings.602

For Availability scenarios 1 and 2 under the type-based match model, the standard er-603

rors in Simulation study B (large population scenario) are smaller than the corresponding604

values in Simulation study A (small population scenario). However, the standard errors605

under Availability scenario 3 in Simulation study B are about three times larger than the606

standard errors for Availability scenarios 1 or 2. We suspect that the asymmetrical gender607

and education availabilities in Availability scenario 3 results in some model degeneracy608

when the large population approximation of the outcome distribution is used. As in Sim-609

ulation study A, the distributions of the parameter estimates appear to follow a Gaussian610

distribution.611

We evaluated different methods of accounting for uncertainty in our estimates. Based612

on results in Section 7.3, we believe that the approximation of the Hessian matrix leads613

to volatile analytical confidence intervals which deviate from the threshold coverage rate614

of 95%. We also show that in almost all cases, the modified version of the studentized615

t procedure for construction confidence intervals performed as well as or better than the616

percentile and basic methods. Additionally, while the percentile and basic method-based617

confidence intervals demonstrated slight undercoverage, the average coverage probabilities618

of the studentized t confidence interval for almost all parameters were centered around 95%.619

All three bootstrap methods produced confidence intervals which displayed significant620

undercoverage for the β1 or 2,4 and β4,1 or 2 parameters. This is not surprising, as these621

categories of households had low counts in populations simulated from Availability scenario622

1.623

The revealed preferences model can be used to make inferences which are particularly624

useful in demographic studies. For example, the preference parameter estimates when we625

fit the reduced mix specification of the revealed preferences model to the restricted 2008626

SIPP data are given in column 3 (β0) of Table 4. The estimated utility of households627

in which both individuals have the same education level is substantially higher than it628

is for households where individuals have different education levels. This preference of629

homophily is expected by researchers who study matching problems. It is also consistent630

with the findings of Logan et al. (2008), who presented results which implied a preference631

for homophily in race and religion in heterosexual marriages.632

In this paper, we applied the revealed preferences model to SIPP data. However, the633

model is novel in that the parameterization is well suited for even larger samples and634

census type data.635

An open-source R package implementing the methods developed in this paper, rpm,636

(Handcock et al., 2020), was used to do the simulation studies and analyze the case-637
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studies. We intend to make code available for these procedures in the R package rpm on638

CRAN (R Core Team, 2020).639
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A. Supplementary Tables645

Table 3: Means and standard errors (SEs) of match model parameter estimates β̂ in
Simulation study A (1,000 simulations, N = 7, 000)

Availability Availability Availability
Parameter Truth Scenario 1 Scenario 2 Scenario 3

βmatch,0 Mean SE Mean SE Mean SE
intercept -2.564 -2.589 0.110 -2.582 0.116 -2.587 0.118
match 1 1.867 1.826 0.324 1.840 0.309 1.861 0.231
match 2 0.769 0.751 0.273 0.743 0.249 0.530 1.123
match 3 0.474 0.469 0.208 0.464 0.211 1.180 1.392
match 4 2.148 2.135 0.198 2.115 0.268 2.124 0.199

Table 4: Means and standard errors (SEs) of reduced mix model parameter estimates β̂
in Simulation study A (1,000 simulations, N = 7, 000)

Education Availability Availability Availability
Parameter Truth Scenario 1 Scenario 2 Scenario 3

Female Male βmix,0 Mean SE Mean SE Mean SE
1 or 2 4 -4.154 -4.008 0.522 -3.898 0.451 -2.884 0.311

4 1 or 2 -2.881 -2.954 0.380 -2.961 0.400 -2.905 0.188
1 1 -0.709 -0.790 0.319 -0.764 0.262 -0.755 0.209
2 1 -2.011 -2.086 0.437 -2.087 0.390 -2.065 0.362
3 1 -2.591 -2.690 0.411 -2.667 0.379 -2.642 0.333
1 2 -2.474 -2.619 0.546 -2.593 0.508 -2.429 0.538
2 2 -1.796 -1.848 0.268 -1.824 0.229 -1.919 0.559
3 2 -2.495 -2.523 0.256 -2.529 0.253 -2.634 0.554
1 3 -3.281 -3.325 0.574 -3.348 0.564 -2.219 0.348
2 3 -2.415 -2.474 0.308 -2.472 0.295 -2.094 0.456
3 3 -2.084 -2.115 0.184 -2.117 0.182 -2.152 0.548
4 3 -2.272 -2.327 0.287 -2.329 0.340 -2.353 0.382
3 4 -2.362 -2.416 0.333 -2.454 0.430 -2.390 0.558
4 4 -0.424 -0.451 0.158 -0.473 0.253 -0.455 0.166

Education level codes: 1 =<high school, 2 =high school, 3 =some college, 4 =≥bachelors

B. Confidence intervals from 200 simulations646

Figures 5 and 4 show the analytical confidence intervals and the empirical boostrap confi-647

dence intervals produced over 200 simulations. These figures coincide with the simulation648
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Table 5: Mean and standard errors (SEs) of match model parameter estimates β̂ in
Simulation study B (1,000 simulations, N = 300 million)

Availability Availability Availability
Parameter Truth Scenario 1 Scenario 2 Scenario 3

βmatch,0 Mean SE Mean SE Mean SE
intercept -2.564 -2.566 0.091 -2.570 0.090 -2.670 0.422
match 1 1.867 1.859 0.210 1.863 0.212 1.957 0.448
match 2 0.769 0.758 0.175 0.754 0.181 0.831 0.420
match 3 0.474 0.457 0.142 0.466 0.146 0.534 0.401
match 4 2.148 2.161 0.143 2.158 0.137 2.236 0.427

Table 6: Means and standard errors (SEs) of reduced mix model parameter estimates β̂
in Simulation study B (1,000 simulations, N = 300 million)

Education Availability Availability Availability
Parameter Truth Scenario 1 Scenario 2 Scenario 3

Female Male βmix,0 Mean SE Mean SE Mean SE
1 or 2 4 -4.154 -4.271 0.616 -4.196 0.500 -4.260 0.572

4 1 or 2 -2.881 -2.939 0.388 -2.955 0.385 -3.227 0.890
1 1 -0.709 -0.711 0.190 -0.726 0.196 -0.735 0.203
2 1 -2.011 -2.048 0.238 -2.047 0.250 -2.079 0.262
3 1 -2.591 -2.615 0.252 -2.636 0.253 -2.660 0.254
1 2 -2.474 -2.511 0.295 -2.503 0.305 -2.533 0.316
2 2 -1.796 -1.807 0.160 -1.815 0.153 -1.838 0.156
3 2 -2.495 -2.511 0.158 -2.505 0.155 -2.549 0.165
1 3 -3.281 -3.344 0.371 -3.345 0.357 -3.338 0.356
2 3 -2.415 -2.423 0.220 -2.444 0.207 -2.486 0.214
3 3 -2.084 -2.093 0.113 -2.099 0.121 -2.135 0.115
4 3 -2.272 -2.284 0.194 -2.289 0.189 -2.330 0.190
3 4 -2.362 -2.375 0.207 -2.379 0.209 -2.397 0.207
4 4 -0.424 -0.414 0.109 -0.430 0.107 -0.445 0.107

Education level codes: 1 =<high school, 2 =high school, 3 =some college, 4 =≥bachelors

results related to uncertainty estimates described in Section 7.3. The horizontal axis gives649

the simulation index, and the vertical axis shows the range of the interval. The solid650

point at the center of each interval indicates the parameter estimate in the bootstrapped651

sample at that index. The horizontal red line in each plot represents the true parameter652

value, and intervals in blue are those which failed to include the true value. We provide653

the empirical coverage rate of the parameter for each method of confidence interval in the654

top-right corner of the plots.655

The first three panels of Figure 4 show the 200 confidence intervals for β4,4 produced656

by each of the three bootstrapping methods which were described in Section 5.2. The657

three methods for constructing the bootstrapped confidence intervals produce very sim-658

ilar results, with the basic bootstrap method achieving 95% coverage and the percentile659

and modified studentized t methods achieving 96% coverage. Furthermore, the confidence660

intervals appear to have similar lengths across the three methods.The bottom-right panel661

shows the analytical confidence intervals produced for β4,4 based on the same simulated662

populations. We note that the analytical 95% confidence intervals only achieve 83% cov-663

erage in this set of simulations, indicating undercoverage.664

The performances of the three bootstraps methods are more varied more when eval-665

uating the β1 or 2,4 parameter. The modified studentized t and the percentile bootstrap666
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confidence intervals achieve a coverage rate of 88% and 86.5%, respectively, while the basic667

bootstrap intervals achieve much lower coverage of 78.5%. Furthermore, the percentile and668

studentized t methods produce intervals which are generally wider than those produced669

by the basic bootstrap method. The analytical confidence intervals in the bottom-right670

panel of the figure are so narrow that few of them capture the true value, resulting in a671

poor coverage rate of 10.5%.672

We note that several of the confidence intervals shown in Figure 5 include -6, which673

was the lower bound we imposed on preference parameters in our study. These intervals674

effectively have no lower bound, since any preference parameter value of -6 or below is675

interchangeable with negative infinity.676
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