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CAUSALITY IN LIFE COURSE STUDIES 
 

ABSTRACT 

This chapter explores common methods of causal inference used in life course research. 

The central premise of life course research is the presumption that no period of life can be 

understood in isolation from prior experiences, as well as individual’s aspirations for the 

future. This chapter discusses the context of common causal inference methods as they 

relate to life course research, including regression, propensity score matching, 

instrumental variables, and fixed effects. We also discuss strategies for incorporating 

variation in response to treatment according to heterogeneity, time-variation, and 

mediation, important components to estimating effects over the life course with a causal 

framework. The chapter aims to explain the assumptions behind the methods we present, 

and includes some heuristic derivations to aid in intuitive explanations. We also provide 

examples of the methods discussed using constructed data with a known data generating 

process.  
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CAUSALITY IN LIFE COURSE STUDIES 
 
1   Introduction 

This chapter surveys common methods employed for causal inference in life course research. 

Pearl (2009) explains that cross-sectional data can establish associations between variables, but 

alone cannot establish causality. In the methods described below, causal inference is the result of 

estimating the conditional change in an outcome associated with changes in an independent 

variable in a theoretical framework where the identified relationship can be plausibly interpreted 

as causal. This implies that inferring causality generally rests on the researcher’s ability to 

complete two objectives: (1) Formulate a research framework where the relationship between 

two measures 𝑥 and 𝑦,  should be interpreted as a change in 𝑥  initiating a change in 𝑦, as opposed 

to a change in 𝑦 initiating a change in 𝑥, 𝑥 and 𝑦 causing changes in each other simultaneously, 

or 𝑥 and 𝑦 both responding to changes in a third measure 𝑧; and (2) Generate an unbiased 

estimate of the change in 𝑦 associated with a change in 𝑥. The primary methodological emphasis 

in this chapter, and indeed in the literature, is on achieving objective (2); objective (1), however, 

deserves discussion as well. 

 The most convincing frameworks for facilitating causal inference tend to argue that the 

independent event of interest 𝑥 was governed by a process exogenous to the outcome of 

interest  𝑦,  and that 𝑥  occurred chronologically before 𝑦. The exogeneity of 𝑥 guarantees the 

absence of an endogenous measure, 𝑧, that influences both 𝑥 and 𝑦, while the chronological 

timing implies that 𝑦 could not have caused 𝑥. This leaves a causal effect of 𝑥  on 𝑦 as the only 

plausible interpretation. Beyond experimental or quasi-experimental settings, in which these 
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conditions may be more convincingly satisfied, we often aim to employ conditional 

independence as a way of limiting potential pathways of causality. With conditional 

independence, we assume that after controlling for differences in some set of observables,  𝑤, 𝑥 

is governed by a process exogenous to 𝑦. This condition, with the continued assumption that 

𝑥  occurred chronologically before 𝑦 can also be sufficient for causal inference. In practice, this 

type of argument is employed very often with the caveat that there may be additional observable 

or unobservable measures excluded from 𝑤 that result in a violation of conditional 

independence, and compromised grounds for causal inference. 

Below we discuss a number of methods commonly employed to understand the 

conditional change in an outcome associated with a change in an independent variable. This 

includes multivariate regression, matching models, instrumental variable models, and fixed 

effects models, all useful approaches for causal inference when estimating effects over the life 

course. We also briefly discuss experimental and quasi-experimental frameworks. To streamline 

the discussion, several methods were omitted such as structural equation models, growth curve 

models, method of moment estimators, and a large class of non-parametric estimators. For the 

models discussed below, we aim to give the reader a practical intuition for the usefulness and 

applicability of each model. In some cases we add heuristic mathematical motivation to illustrate 

technical points and illustrate the benefits and limitations of model assumptions. We also 

construct simulated data and estimate some of the listed models on our constructed data set. 

The chapter proceeds as follows. Section two describes various causal inference methods 

and discusses their benefits and limitations in life course research. Section three extends our 
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basic models to incorporate response variation according to individual characteristics, time, and 

post-treatment events and circumstances. Section four describes our research question, simulated 

data, and the information available to the researcher. Section five explains the process that 

generated the simulated data, and discusses the true simulated relationship between treatment 

and outcome. Section six compares estimates from various causal inference methods in section 

four to the true effect estimates from section five and discusses the strengths and weaknesses of 

each method. Section seven concludes. 

 

2   Methods for Causal Inference in Life Course Research 

This section describes, discusses, and illustrates the use of several common causal inference 

approaches. We start each section with a brief statistical presentation of each model and it’s 

necessary assumptions, and discuss some of the strengths and weaknesses of each method. 

 

A. Regression Models 

Ordinary Least Squares (OLS) regression models are undoubtedly the most heavily 

employed tool for understanding the relationship between vectors. OLS models the conditional 

expected value of a measure, 𝑦, given a fixed value of, 𝑑. 𝛿 can be estimated directly as a linear 

projection. Given 𝑁×1 matrices 𝑦 and 𝜀, and 𝑁×𝐾 matrix 𝑋,  with the assumed relationship 

𝑦 = 𝑑𝛿 + 𝜀, we can solve for an estimator, 𝛿!"#: 

      𝛿!"# = 𝑑!𝑑 !!𝑑!𝑦 
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Cameron and Trivedi (2005) specify a set of assumptions which guarantee consistency of 𝛿!"#.   

Consistency roughly means that the parameter estimate 𝛿!"# converges to 𝛿 as sample size 

increases. We provide a brief overview of those assumptions below. 

i The data are generated by a process that can be accurately modeled as, 𝑦 = 𝑑𝛿 + 𝜀.  This 

assumption implies that a fitting outcome should be continuous, as opposed to binary or 

categorical. 

ii. The 𝐾×𝐾  matrix 𝑋′𝑋 is well behaved such that it approaches a finite, existent, non-

singular matrix as 𝑁 increases. 

iii 𝐸 𝑑!!𝜀! = 𝟎, such that 𝑥! and 𝑢! are uncorrelated. 

iv. The data are independently and identically distributed over 𝑖 = 1,2,…𝑁 with 𝐸 𝜀 𝑑 = 0, 

and 𝑉𝑎𝑟 𝜀!|𝑑 = 𝜎!! 

These assumptions work together to guarantee consistency of the OLS estimator.  

 OLS is limited for evaluating life course causal effects. First, there a number of ways in 

which life course processes may violate the assumptions set forth above. While OLS assumes a 

constant linear relationship between the independent variables and outcome, many life processes 

may not behave this way. Hungerford and Solon (1987) re-examine the relationship between 

education and wages to find evidence that log wages are not a smooth function of education. 

They report evidence of a “sheepskin” effect where wages increase with the completion of 

certain educational thresholds. A model that instead assumed a linear relationship between years 

of completed education and wages would be mis-specified if the data generating process were 

more reflective of the ‘sheepskin’ process. 
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 Second, of particular concern for this chapter, we have limited ability to differentiate 

between causal and non-causal relationships. Possible correlation between observables and 

unobservables threatens to bias OLS estimates. In life course research there are often a range of 

potentially important factors that may be omitted from a model. A number of factors may enter a 

model through the error component, such as political or historical contexts, unobserved 

preferences and/or constraints, and other omitted variables. If these factors influence the outcome 

of interest, they may also influence values of 𝑋, leading to a correlation that violates the key 

assumption of selection on observables (𝐴3) and may produce a biased estimate of 𝛽. Nothing in 

the standard OLS framework implies that the estimated relationship between the independent and 

dependent variable are causal. OLS offers a way of estimating the conditional change in one 

measure associated with a change in a related measure. Any attempt to interpret this change as 

causal is based on a theory of the mechanisms at play, which extends beyond the mathematical 

properties of OLS.  

OLS tends to be a reasonable starting point for studying continuous measures, but 

inappropriate for binary and categorical outcomes due to violation of the linearity assumption 

(A1). In such cases, we turn to binary and discrete choice models for inference. Binary choice 

models are generally formulated from the conceptual framework of studying a latent variable 𝑦∗, 

using observable 

 

𝑦 = 1 𝑦∗ ≥ 0
0 𝑒𝑙𝑠𝑒

 

 where 𝑦∗ =   𝑥!′𝛽 + 𝜖.   Given this identity, we can write: 
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Pr 𝑦! = 1 𝑥! = Pr 𝑦∗ ≥ 0  

= Pr  (𝑥!!𝛽 + 𝜖 ≥ 0) 

= Pr 𝑥!!𝛽 ≥ −𝜖  

= Pr 𝑥!!𝛽 ≤     𝜖  

= 𝐹(𝑥!!𝛽)  

 

Where 𝐹(⋅) is the cumulative distribution function (CDF) of   ϵ.  We can transform this into a 

probit or logit estimator by making appropriate assumptions on the distribution of  ϵ, and thus the 

functional form of 𝐹(⋅). If𝜖~  𝑁(𝜇,𝜎!), 𝐹 𝑋𝛽 = Φ !"!!
!

,  where Φ(⋅) denotes the standard 

normal CDF. Alternatively, if 𝜖 obeys the CDF of the logistic distribution, 𝐹 𝑋𝛽 = Λ 𝑋𝛽  

where Λ ⋅  denotes the CDF of a logistic distribution leading to the estimation of a logit model. 

Multinomial logit models are also available to estimate effects on categorical outcomes with 

more than two values. 𝜖 could also follow an extreme value distribution implying complimentary 

log-log estimation. Linear probability models (OLS on a binary outcome) are also sometimes 

used, however, the resulting parameter estimates have an expected bias due to the clear violation 

of the functional form assumptions in 𝐴1 above. Binary outcome modes are essentially a 

transformation an OLS model, and for that reason they inherit many of the same limitations 

faced by OLS models for causal inference over the life course. We face potential uncertainty 

about the true functional form governing our process of interest, and the uncertainty may 

increase with binary models based on the assumed structure of a latent variable 𝑦∗ and its 
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assumed relationship to observed 𝑦! .  Most importantly, we face the same uncertainty concerning 

the assumed independence of observed 𝑥! and unobserved 𝜖! . 

Lagged dependent variable models are a variation of OLS or logistic regression models that 

utilize data over the life course to obtain better estimates of causal effects. Such models include a pre-

treatment measure of the outcome as a regressor, and in so doing help control for differences in pre-

treatment characteristics that may bias effect estimates. However, we note a few limitations of this 

approach. First, the approach requires the availability of a pre-treatment outcome measure, which may 

not be available in some research settings. Second, controlling for pre-treatment differences does not 

control for other changes that occur between pre-treatment measure and follow-up. This implies a 

potential need to control for changes that occur in the interim, and to limit the interim time period to the 

extent possible to limit the likelihood of unobservable changes influencing effect estimates. Lagged 

dependent variable models and fixed effects model are similar in that they both incorporate repeated 

measures of an outcome. They differ in that while fixed effects models assign special status to pre-

treatment outcomes, by incorporating them into the dependent variable, lagged dependent variable 

models treat outcome observations from previous period(s) as simply another regressor in explaining 

the level of the post-treatment outcome.  

 

B. Matching Models 

Matching estimators are used to estimate treatment effects by taking the average 

difference in a selected outcome between individuals with the same pre-treatment observables 

and different treatment assignments. The fundamental difficulty in estimating treatment effects 
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involves the impossibility of observing the same observation under observed and counterfactual 

conditions. Given an outcome 𝑦 that depends upon observables 𝑋, unobservables 𝜀,  and 

treatment status 𝑑, we can estimate an average treatment effect by  

𝛿 =   𝐸 𝑦 𝑋! , 𝜀! ,𝑑 = 1 − 𝐸 𝑦 𝑋! , 𝜀! ,𝑑 = 0  

  where  E ⋅   is  the  expectation  operator,𝑋! = 𝑋!, and  ε! = ε!. The above estimates 𝛿  by 

computing the expected difference in outcome value among people who differ only by treatment 

status. Given that individuals have identical profiles for observables 𝑋,we  attribute  average 

differences in values to differences in treatment assignment. This assumes that conditioning on 

𝑋  is sufficient for achieving conditional independence of the outcome and the treatment such that 

𝑃𝑟 𝑑 = 1|𝑋   ╨  y. Matching methods provide a conceptual framework that parallels 

experimental settings for evaluating estimated effects in observational settings where assignment 

to treatment is non-random.  

 Matching estimators may introduce a dimensionality problem that strains available data. 

Given the need to condition up 𝑋 ∈   𝑅!   , where 𝑅! R denotes the real numbers and k indexes 

dimensionality. the data needs to have a sufficient number of 𝐾 −dimensional matches to 

facilitate estimation of an expected difference. If 𝐾 is relatively large the data may not have the 

available matches. Even for small values of 𝐾 where each dimension is continuous, having 

available matches may be problematic. Rosenbaum and Rubin (1983) recommend propensity 

score matching to reduce the dimensionality of the matching problem. Given that assignment to 

treatment depends upon observables 𝑊,  we model the probability treatment as  

𝑃𝑟 𝑑 = 1 𝑋 = 𝐹 𝑋Γ  
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where 𝐹(⋅) is a cumulative distribution function, and a binary model is estimated, usually probit 

or logit. Estimating such a model allows the calculation of 𝑃𝑟 𝑇 = 1 𝑋 , a one dimensional 

measure that summarizes one’s likelihood of treatment given available observables. We then 

match treated and untreated observations based on the one-dimensional estimated probability of 

treatment, instead of matching on 𝐾-dimensional observables. This approach facilitates average 

effect estimates with smaller datasets, while permitting more measures to be considered in the 

matching process. 

 The above discussion of propensity scores and matching is highly non-technical and 

omits the mathematical assumptions that validate the method. See Rosenbaum and Rubin (1983, 

1985) for a more formal discussion of the method and see Caliendo, Marco, and Kopeinig 

(2008), Leuven and Sianesi (2014), and Morgan and Harding (2006) for practical guidance on 

implementing the method. There are many examples of propensity score matching used as a tool 

to estimate treatment effects in social research over the life course. See Brand and Halaby (2006) 

and Brand, Pfeffer, and Goldrick-Rab (2014) for a few recent examples of research on the effects 

of higher education on life outcomes.  

 Matching estimators offer an approach for effect estimation when parametric regressions 

assumptions may be violated and experimental approaches may be unavailable. However, like 

regression approaches, matching models to estimate causal effects over the life course are 

limited. When using a propensity score matching approach (or a regression approach), one needs 

a fairly strong model of the treatment assignment process of interest.  With some natural 

processes, it may be extremely difficult to construct a model of endogenous treatment 
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assignment. We must again make assumptions concerning unobservables, 𝜀. Though we often 

expect individuals with similar observables to have similar unobservables, this may not be the 

case. Given a life course perspective where 𝜀 encompases all prior characteristics about an 

observation not captured by 𝑋,    significant differences between 𝜀! and 𝜀! ,  for 𝑖 ≠ 𝑗 are 

conceivable and at times expected. 

 

C. Instrumental Variable Models 

In many research situations, OLS effect estimates are biased due to a violation of the 

ignorability, or selection on observables, assumption 𝑖𝑖𝑖 above. The following heuristic treatment 

demonstrates the bias in OLS relative to an IV approach. Suppose we wish to estimate the effect 

of 𝑑! on 𝑦!, given knowledge that an unobservable, 𝑧!, exists that is correlated with 𝑑! and affects 

𝑦! . OLS has no way of distinguishing between the effects on 𝑑! on 𝑦!, and the correlated effects 

of 𝑧! on 𝑦! . IV estimation addresses this limitation of OLS by introducing an instrumental 

variable, 𝑤!, that is correlated with 𝑥! , but uncorrelated with both 𝑤! and 𝑢! . Mathematically, this 

implies that assumptions 1 through 3 above hold. Intuitively, it implies the existence of a 

measure that shifts 𝑑! independently of both 𝑧!   and 𝜀! , to produce an estimate of 𝛿 that is 

unbiased. The bivariate IV estimator takes the form: 

𝛿!" =
1
𝑁 𝑤!𝑦!!

!!!

1
𝑁 𝑤!𝑑!!

!!!

   

where 𝑤! is an instrument. The instrumental variable, 𝑤! , satisfy the following assumptions: 

𝑖.𝑤! must be correlated with 𝑑! such that 𝐸 𝑥!𝑧! ≠ 0. 
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ii. 𝑤  must be uncorrelated with 𝑧! such that 𝐸 𝑤!𝑧! = 0. 

𝑖𝑖𝑖.𝑤! must be uncorrelated with 𝜀! such that 𝐸 𝑤!𝜀! = 0. 

See Cameron and Trivedi (2005, 2010, chap. 6), Greene (2012, chapter 8) and Wooldridge 

(2010, 2013) for a more general treatment of IV estimators.  

In life course research, it is extremely difficult to identify an IV that satisfies the 

assumptions above. It is typically easy to find a measure that is correlated with the treatment of 

interest, 𝑥! , but difficult to argue that a potential instrument is uncorrelated with an unobserved 

confounder, and that the potential instrument has no independent effect on the outcome of 

interest, 𝑦! , beyond its effect through 𝑥! . Lleras-Muney (2005) offers an example of identification 

of an IV in life course research. She aims to estimate the causal effect of education on adult 

mortality using a method that accounts for the likely existence of unobservables that may lead 

individuals who choose to obtain greater education to make other choices that affect their 

mortality, a phenomenon that would lead to a bias in the estimated affect of education on 

mortality. Lleras-Muney (2005) employs an IV approach using changes in compulsory state 

mandated schooling levels as an instrumental variable. Changes in compulsory education laws 

increase the education level of students who would have discontinued their education earlier in 

the absence of the policy constraint.  

 

D. Fixed Effects Models 

Individual fixed effects models are useful when data contain repeated observations from a 

given unit, more likely when we estimate effects over the life course, and each unit is expected to 
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have a time invariant value, 𝛼! , that shifts the outcome of interest, 𝑦! , in addition to changes in 𝑦! 

that are correlated with 𝑋. This yields a model: 

𝑦!" =   𝛼! + 𝑋!"𝛽 + 𝜀!" 

where  𝑖 denotes a unit of observation and 𝑡 denotes the time period of the observation. In this 

model, OLS leads to biased estimates of our parameter of interest, 𝛽, if 𝛼! is correlated with 𝑋!" 

such that  𝐸[𝑑!"′𝛼!]   ≠ 0. A fixed effects model produces an estimate of 𝛽 unbiased by 𝛼! .    Fixed 

effect’s models avoid a bias from 𝛼! by estimating 𝛽 using within person/unit variation in 𝑋!" 

and 𝑦!" . We employ this approach by demeaning values of 𝑦!" ,𝛼! , 𝑋!" , 𝜀!", and estimating 𝛽!" 

using an OLS regression of the deviations in 𝑋!" on the deviations in 𝑦!" . Since 𝑦!" = 𝛼! + 𝑑!"𝛽 + 

ε!" , we can subtract 𝑦!" from both sides of D.1 and rearrange terms to get: 

𝑦!" − 𝑦!" =   𝛼! + 𝑋!"𝛽 + ε!" − 𝑦!" 

𝑦!" − 𝑦!" =   𝛼! − 𝛼!   + (𝑋!" − 𝑋!")𝛽 + ε!" − ε!" 

                      𝑦!" = 𝑋!"𝛽 + 𝜀!" 

Where 𝑦!" = 𝑦!" − 𝑦!" , 𝑋!" = 𝑋!" − 𝑋!" ,   and 𝜀!" =    ε!" − ε!".    Note that 𝛼! − 𝛼! = 0  since 𝛼! is 

time-invariant, which leaves our fixed effects estimate, 𝛽!", 𝛼! free. 𝛽!" is an unbiased estimator 

of 𝛽 if 𝑋!" and 𝜖!" are uncorrelated. That is, time-varying processes that may threaten the 

plausibility of the ignorability assumption remain a concern. Budig and England (2001) offer an 

example of individual fixed effects models, applied to an analysis of the wage penalty of 

motherhood. They found a wage penalty of approximately 5 percent per child, controlling for 

marital status and human capital variables. 
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 Sibling models are a subset of fixed effects models where fixed effects are assumed to be 

family specific instead of individual specific. Such models are widely used to understand the 

effects of life events on children in an analytical framework that controls for differences between 

children and families that may otherwise bias effect estimates. Currie and Thomas offer an 

example of sibling fixed effects models, applied to an analysis of the long-term effects of Head 

Start on students’ academic achievement.  They find significant gains in test score and declines 

in the likelihood students will repeat a grade, but the positive benefits are concentrated among 

white children. 

 One potential concern with fixed effects model concerns the ambiguity of exactly what is 

subsumed in the fixed effects parameter. It is not always clear that a fixed effects model is not 

introducing an endogenous selection bias, and possibly dampening the treatment effects of 

interest. Researchers should carefully consider whether the differencing process undermines the 

variability they wish to explain. 

 

E. Experimental and Quasi-Experimental designs 

Experimental research designs help facilitate identification of treatment effects by 

maintaining full control over the treatment assignment process. Knowledge of the treatment 

assignment process allows a stronger argument for claiming that treatment is uncorrelated with 

unobservables that may lead to bias in parameter estimates and that there are no selection effects 

governing who receives treatment, which implies no systematic differences between the treated 

and untreated. 
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  Randomized Control Trials (RCTs) are the most common type of experiment. In RCTs 

each unit of study is randomly assigned to either a treatment or control group. In many RCTs, the 

researcher obtains a baseline measure of the outcome of interest at or near the time of 

randomization. Then, one group receives the treatment, and then a follow-up measure is taken 

that captures treatment effects. Effect estimates may be calculated via a difference calculation 

that looks at the incremental change in the outcome measure of the treatment group relative to 

the control group, or regression analysis which can further control for differences in observables 

among the treatment and control groups that may randomly occur. While RCTs are highly 

effective at reaching causal effect estimates, they are often very expensive. For many questions 

concerning life processes, an experiment mandating that individuals endure certain treatments is 

precluded for both practical and ethical reasons. Though RCTs are designed to offer clean 

effects, they do not always address the intuitive question of interest. RCTs indicate the effect of 

being assigned to a particular treatment group. In many interventions, there are additional 

considerations of a take-up rate and dosage. At times, experimental results indicate a zero effect 

potentially because the parameters of program design allow treated individuals to receive less 

than the recommended treatment dosage. Those engaging in experimental design try to safeguard 

against opportunities for participants to make endogenous choices that affect program receipt and 

effect estimates. 

 Quasi-experiments aim to achieve the benefits of a full experiment in a setting where the 

researcher does not have full control over the treatment assignment process. One of the most well 

known quasi-experiments in the stratification literature is the Moving to Opportunity (MTO) 
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experiment. This intervention randomly assigned two types of housing vouchers to low income 

families and in order to assess neighborhood effects on economic, health, and child outcomes. 

One voucher afforded families the option of moving to another low-income neighborhood, and 

the other offered the option of moving without constraint. Each treatment family chose whether 

or not to exercise their option to move, and this lead to selection issues and controversy 

concerning the validity evaluation results [see Goerhrig (2003), Ludwig et al. (2008), and 

Sanbonmatsu, Lisa, et al (2011) for further discussion of MTO]. 

 A natural experiment is a type of quasi-experiment where the researcher has no control 

over the treatment assignment process, but has reason to believe that the natural treatment 

process yields (1) and (2) above. Sharkey (2010) examines the acute effects of local homicides 

on cognitive performance of children. He uses the exogeneity between the timing of local 

homicides and the timing of vocabulary and reading assessments in Chicago schools to craft a 

natural experiment that gives estimates of the short-term decrease in test scores associated with 

exposure to local homicide. He finds significant negative effects on tests administered up to 

seven days after a local homicide. The acute affect weakens over time and becomes arbitrarily 

close to zero on after four weeks.  

 

3 Causal Inference in the Presence of Heterogeneity, Time-Variation, 

and Mediation  

A. Identifying Heterogeneous Causal Effects 
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If there is treatment effect heterogeneity, average treatment effects can vary widely 

depending on the population composition of the treated and thus simple averages do not have a 

straightforward interpretation. Indeed, an important development of the causal inference 

literature is the recognition that treatment effects are likely to be heterogeneous (Angrist and 

Krueger 1999; Brand and Simon-Thomas 2013; Heckman, Urzua, and Vytlacil 2006; Morgan 

and Winship 2012, Xie, Brand, and Jann 2011; Xie 2011). This kind of heterogeneity does not 

merely reflect group differences at the baseline that can be “controlled for” by covariates in 

regression or matching models, or fixed effects. The recognition that treatment effects may vary 

by the probability of treatment, beyond response variation by selected covariates like gender or 

race, has led to new methods of causal inference and to refined interpretations of effect estimates 

derived from existing methods (Brand and Xie 2010; Elwert and Winship 2011; Morgan and 

Todd 2008; Morgan and Winship 2012; Xie 2011; Xie, Brand, and Jann 2013). Despite 

widespread belief by practitioners, traditional regression estimates do not represent 

straightforward averages of individual-level causal effects if individual-level variation in the 

causal effect of interest is not random. Instead, they give a peculiar type of average – a 

conditional variance weighted average of the heterogeneous individual-level effects, where 

population composition weights can produce widely different effect estimates. 

Regression and matching models can be used to recover subpopulation treatment effects 

of interest, including the treatment effect on the treated (TT) and the treated effect on the 

untreated (TUT). Let us define the average difference among those individuals who were actually 

treated, the TT: 
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, 

and the average difference among those individuals who were not treated, the TUT: 

 

Statistical modeling to explore empirical patterns of effect heterogeneity as a function of the 

propensity score have also been employed to recover patterns of treatment effect heterogeneity 

(Xie, Brand, and Jann 2013). Several recent studies have adopted this approach to address 

questions involving heterogeneous effects of higher education on a range of life course outcomes 

(Brand 2010; Brand and Davis 2011; Brand, Pfeffer, and Goldrick-Rab 2014; Brand and Xie 

2010; Musick, Brand, and Davis 2012). Instrumental variable models, in the presence of effect 

heterogeneity, may be interpreted as identifying local average treatment effects (LATE), those 

effects corresponding to subpopulation on the margin of treatment participation, induced by the 

particular instrument under consideration. 

 

B. Identifying Causal Effects with Time-Varying Treatments and Time-Varying Outcomes 

 Life course research often involves the analysis of effects of events that occur over time, 

which raises particular concerns with causal inference. Individuals who experience the event of 

interest early on may do so for different reasons than those who experience the event later. 

Researchers must carefully attend to the conceptual and theoretical issues underlying life course 

treatments. For example, Brand and Simon-Thomas (2014) look at the effects of maternal job 

displacement on educational and social-psychological outcomes of children using a propensity 

score model estimation framework. Correcting for selection into displacement requires a 

  δTT = E( y1 − y0 | d = 1).

  δTUT = E( y1 − y0 | d = 0).
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reasonably strong model of which children are most likely to experience maternal job loss. 

Models that predict the likelihood of experiencing displacement using only covariates available 

at or before the child’s birth do a much better job of predicting displacement events that occur in 

early childhood relative to displacements experienced in middle childhood and adolescence. This 

illustrates some of the difficulty one may encounter when using one model to explain an 

occurrence that happens at different times for different reasons. However, Brand and Simon-

Thomas (2014) also partition maternal displacement into three periods across childhood, and 

assess effects that occur at varying points in young adulthood, adopting the conceptual 

framework of Brand and Xie (2007) we discuss below.  

Brand and Xie (2007) discuss some of the conceptual challenges involved with 

estimating causal effects of non-repeatable and non-reversible treatments that occur at different 

points in time, and that affect outcomes that are measured at different points in time. Table 1 

shows the possible combinations of time varying treatments and outcomes. We also list the effect 

of interest in each case for some outcome 𝑦! measured at time 𝑣. Treatment of study occurs at 

time 𝑑, and we operate in an environment where non-repeatable and non-reversible time varying 

treatments may occur at multiple times before and after the treatment event of interest. In the 

table below, we care to study the treatment events that occur at time 𝑡, but there may also be 

observations who experience the event at time 𝑡!.  Table 1 shows four possible ways in which 

time-varying treatments and outcomes may interact. 

Case 1 considers the effects of a time-invariant treatment on a time-invariant outcome. 

This is the classic assumed two period framework where treatment occurs in some period and an 
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outcome is realized thereafter. Case 2 consider the effect of a time-invariant treatment on a time-

varying outcome. This would be useful if we care to assess how a disruption affects an outcome 

measured in repeated future periods. These types of analyses help determine how treatment and 

time since treatment interact in the determination of causal effects, and offer evidence as to 

whether affects grow or weaken over time. Case 3 considers a time-varying treatment and time-

invariant outcome. This model can shed further light on how processes unfold over time. For 

example, one could use this approach to understand whether experiencing marital disruption has 

dramatically different implications for a women’s earnings at age 40 depending upon whether 

she’s in her 20’s or 30’s when the disruption occurs. Case 4 considers time-varying treatment 

and time-varying outcomes. For example this set-up could assess the differences in the effects of 

job loss at age 20 and age 25 on earnings at age 30 and age 35 relative to the effect of job loss at 

age 30 and age 35 on earnings at age 40 and age 45. In case 1 the relevant counterfactual to 

receiving a treatment in period 1 is clearly the subsequent outcome that would occur in the 

absence of period 1 treatment. The same holds for case 2, except that we can employ measures 

from different post-treatment periods as our outcomes of interest. The counterfactual becomes 

slightly more complex in cases 3 and 4. Whereas cases 1 and 2 segment the sample based on 

single period receipt, cases 3 and 4 must consider compare a treated group to a counterfactual of 

not receiving treatment within the data’s observation period and all future periods through 

outcome measurement.  

 Sample and cell size consideration affect the feasibility of producing estimates. 

Comparisons are made between a subgroup who experience treatment at time 𝑡, and the 
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subsample who has not experienced treatment up to time 𝑡. This implies that all individuals who 

experienced treatment before time 𝑡 are excluded from the stated effect estimate. When we care 

about assessing the difference associated with experiencing treatment in different periods, we 

need enough individuals experiencing treatment within those periods to produce reliable 

estimates. A wider interval benefits from the inclusion of more observations, which can yield 

more precise estimates, but means that our pre-treatment covariates have potentially reduced 

ability to predict the probability of treatment exposure. 

 

B. Identifying Causal Effects with Mediating Mechanisms 

 In social research aimed at causal inference over the life course, researchers often aim to 

assess which mediating mechanisms transmit the effect from treatment to outcome. Too often 

researchers simply add an additional intermediary variable to the model, and then assess the 

degree to which the effect of the treatment on the outcome has changed in response to the 

inclusion of the additional variable. This type of analysis, even when a great deal of attention ahs 

been paid to accounting for selection into treatment, often fails to attend to the causal process 

relating the treatment to the mediating variable or the mediating variable to the outcome. We 

argue that if researchers aim to asses indirect causal effects, they should devote the same 

attention to causal processes linking the mediating mechanisms as they do to the primary 

treatment of interest.  
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Judea Pearl (2009) and colleagues have developed directed acyclic graphs (DAGs), 

graphical tools that are becoming increasingly popular by providing a visually tractable 

framework for assessing whether a model is identified and the mechanisms that may mediate 

effects of interest (Elwert 2013). Conventions include that an arrow indicates a direct causal 

effect (d à y), while a missing arrow indicates no causal effects (d y). A line indicates two 

variables are endogenously correlated with no causal direction (x1 – x2). A causal path can be 

depicted by d à y1 à y2, x à y1 ß d à y2 is a non-causal path from x to y2. A variable with two 

arrows along the path pointing into is a collider. For example, y1 is a collider along x à y1 ß d 

à y2. We open our estimation to endogenous selection bias when conditioning on a collider 

variable. Encoded within the DAGs are rules for moving from causation to association. Chains 

represent causal associations (d à y1 à y2), forks represent confounding (d ß z à y1) and 

inverted forks represent endogenous selection (d à y1 ß y2). We represent the causal process 

with a DAG in our empirical example below. 

 

3 Research Question, Data Generating Process, and Causal Estimation 

A. Description of the Data and the Data Generating Process 

For this chapter, we have created simulated longitudinal data that follows adolescents 

through four years of secondary education. The data were collected for two cohorts of young 

people who enter high school two decades apart. Cohort one begins in 1980 and cohort 2 begins 

in the year 2000. The data for each cohort include roughly 5,250 families who have over 7,000 

high school aged children. Each family has between one and three children in the data. The data 
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contain standard demographic characteristics for all children and families. Race and ethnicity 

classifications include white, black, Asian, and Hispanic. Family structure classifications include 

a child/children living with both parents married, unmarried single mother, or living with an 

unmarried single mother with a father/father figure. Single father headed households and 

complex non-traditional household structures were excluded. Parent’s education indicates 

whether each parent’s highest achieved education is less than a high school degree, a high school 

degree, a college degree, or a graduate/professional degree. Families live in one of five 

neighborhoods that differ in their demographic characteristics and risk rate of exposure to the 

treatment of interest. For example, respondents in some neighborhoods have a 3 percent chance 

of random exposure to violence, whereas the probability of random exposure in other 

neighborhoods is as high as 12 percent.  

 The simulated data were generated with the goal of replicating the complexities of survey 

data in a framework that allows for accurate estimation of counterfactual outcomes. To this end, 

some variables in the data were constructed to produce joint distributions similar to those that we 

tend to observe in U.S. data, while other measures were specified subjectively. The data 

generating process begins by specifying the demographic traits of a family. Families are 

characterized by race, household income, community of residents, mother’s education, father’s 

education, family structure, and the number of high school aged children who serve as 

respondents in the data. For each family, one of four races was randomly assigned to yield a 

sample that is approximately 11% Asian, 25% black, 25% Hispanic, and 40% white. Conditional 

upon race, a household income value is chosen from race specific distributions. The income 
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distribution for the year 2000 cohort was defined to approximate the race specific U.S. income 

distribution reflected in March 2009 Current Population Survey data. The 1980s income 

distribution is a transformation of the 2000s distribution where the 2000s income distribution 

first order stochastically dominates the 1980s distribution.1 Household structure is randomly 

assigned according to an income quintile specific distribution. Available structures include (1) 

household lead by married parents, (2) single mother headed household, (3) household lead by 

cohabiting parents. In both cohorts, households with higher income are more likely to be lead by 

married parents, while households with lower incomes are more likely to have to have a single 

head, or cohabiting parent(s). Families from the 1980s cohort are more likely to be married while 

families in the 2000s have more single mother lead households and households with cohabiting 

parents. Conditional upon race and household structure, each family is randomly assigned 

between one and three high school aged children. The same transition probabilities for the 

fertility process apply to both cohorts.  

Parental education takes one of four values (less than high school, high school degree, 

college degree, and graduate/professional degree), and was assigned based on income draws. 

Families with higher household income receive parental education draws from distributions that 

place higher probabilities on higher education levels. Education levels of both mother and father 

are drawn from the same distributions. This approach creates an expected correlation between 

parent’s education and household income, as well as educational homogamy between parents. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The 1980s income distribution has a smaller support (with a maximum value of $150,000 compared to 
$250,000 for the 2000 distribution) and a lower mean value. We implement these distributions by drawing a 
random integer from a uniform distribution on the closed interval [0, 10000], dividing the integer by 100 to get a 
percentile, and mapping that percentile to an income value. See Appendix Table A for the mapping of percentiles 
to income values. 
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Last, five communities are determined that differ in terms of racial composition and probability 

of exposure to violence. Community 0 has a neutral racial composition that mirrors the sample 

wide racial makeup. All other communities have a proportionally dominant racial group.2 The 

demographic characteristics of families were designed to capture many of the issues we observe 

in survey data. We generally see correlations between education, income, race, and other 

measures that obfuscate the direct relationships between demographic measures and an outcome 

of interest. In collected data with unobserved counterfactuals, we have no way of knowing the 

extent to which these correlations bias estimates of interest. In these simulated data, we can 

observe counterfactual outcomes, and thus calculate the difference between regression estimates 

and actual counterfactual outcomes.  

The characteristics described in Table 2 in the two sample periods (1980-84 and 2000-04) 

have notable differences. First, children are much more likely to live with two married parents in 

the 1980s, while mother-headed households and households with cohabiting parents are 

relatively more common in the 2000s. Mothers, however, are significantly more likely to have a 

graduate or professional degrees in the 2000s relative to the 1980s. All but one community 

became less segregated over the 20-year time period with the largest racial group representing a 

smaller percentage of the population of each community. We have academic data for students for 

four years of high school. Measures include whether the student enrolled in high school during 

each year, how many credits were earned towards graduation, and whether the student earned 

enough credits to graduate after four years. We do not follow students’ trajectories beyond this 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 See Appendix A for further details on the constructed data. 
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time frame. The data also includes labor market participation for students, including whether 

students worked in the labor market in a given year, what proportion of their time was allocated 

to wage labor, and their wage rate.  

 

B. Treatment Specification and Decision Mechanisms 

The treatment of interest is exposure to neighborhood gun violence (ETV), and the 

outcomes include the likelihood of high school completion and the number of credits earned 

towards a high school diploma in a 4-year period. Receiving the “treatment” in these data is 

equivalent to answering the following question affirmatively: In the previous school year, have 

you seen anyone shot or shat at, or has anyone close to you been shot or shat at? Among those 

who answer this question affirmatively, it is unknown whether the respondent was exposed to 

fatal or non-fatal shooting. It is also unknown whether the respondent was exposed to more than 

one qualifying event. It is, however, known that fatal shootings are rare and exposure to multiple 

shootings in a given year is uncommon. Patterns of gun violence across neighborhoods have 

changed very little over the 20-year time period. Incidents are relatively uncommon in 

neighborhoods one and two, while neighborhoods three through five tend to experience violent 

occurrences more frequently.  

Community-level graduation rates are negatively correlated with incidents of gun 

violence. While this is consistent with an inverse relationship between exposure to violence 

(ETV) and academic success, there are a range of other differences between communities that 

could partially or fully explain the differences in graduation rates. These include observable 
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differences in parental education, household income, school quality, and racial composition, and 

unobservable differences in ability, personal valuations on education, and varying opportunity 

costs. We aim to assess whether exposure to violence has a causal effect on high school 

completion and credits earned towards graduation. The following section uses some common 

causal inference methods used in life course research to address these questions. 

 The ETV process has modest differences between the earlier and later cohorts. In the 

1980s data, exposure rates are neighborhood dependent but otherwise random. Residents of each 

neighborhood have a fixed year-specific probability of community violence exposure, and 

individual characteristics play no part in determining who experiences the event of interest. The 

violence exposure in the 2000 cohort is similar, except individuals with a high preference for 

leisure are more likely to experience exposure. This adds endogeneity to the process governing 

the receipt of treatment, and this is an issue we often observe in survey data.  

 Educational outcomes are the result of a sequence of static decision problems. Simulated 

respondents make decisions in 4 separate periods, representing the four years of a traditional 

high school career. Given individual preferences for consumption and leisure, as well as a wage 

offer, an endowment/financial allowance from the household, and individual valuation of high 

school graduation, simulated respondents choose how to allocate a fixed allotment of time 

between academic labor, wage labor, and leisure time. Income from each period is used to 

finance consumption for that period only. Inter-temporal savings are not permitted, and 

simulated respondents solve a sequence of intra-temporal problems instead of solving a single 

inter-temporal problem.  It might be more realistic to model this decision inter-temporally, 
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however, it was our objective to write the simplest possible model that would yield non-trivial 

results. This approach succeeds at doing that. 

 In this framework, high school is modeled as a four period process where students must 

earn 12 academic credits to graduate and respondents always aim to divide credits evenly over 

their remaining academic years. Academic credit in period 𝑡, 𝑐!, is the product of academic 

labor, 𝑙!!  and ability, 𝑎! such that 

𝑐! = 𝑙!! ⋅ 𝑎! 

Respondents may have low, medium, or high ability, corresponding to 𝑎! ∈ 9,14,20 , 

respectively.3 Solving for 𝑙!!  in (1) gives 

𝑙!! =
𝑐!
𝑎!

 

showing that kids with higher ability require less labor to earn a fixed amount of academic credit. 

Respondents use the labor demand estimate in (2) to facilitate a decision problem concerning 

whether to continue their education, in period 𝑡. 

Simulated respondents have preferences over consumption, leisure, and high school 

completion. In each period they make time allocation decisions that determine their 

consumption, leisure, and academic credit earned for the period. Time can be allocated to any 

combination of academic labor, 𝑙!!, wage labor, 𝑙!! , and leisure, 1− 𝑙!! − 𝑙!! . Simulated 

respondents determine how they would divide their time if they enroll (do not enroll) in school, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 These values were chosen to simulate ability heterogeneity, and generate differences in the amount of academic 
labor required to complete a year of schooling. The values have no deeper meaning beyond serving that purpose. 
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and choose the option with the highest expected payoff. See Appendix A for details on the 

simulation process. 

 

C. Treatment Effects 

Exposure to violence (ETV) registers as a traumatic experience that depresses 

productivity and erodes gains from leisure time. This is modeled as a loss of 𝜂 units of time that 

would have otherwise gone towards labor or leisure. This leaves the agent with 1− 𝜂 units of 

time to allocate over leisure, academic labor, and wage labor. ETV also lowers the perceived 

gains to a high school degree by raising the subjective probability that one may not survive to 

reap the returns to academic labor. This is modeled as a decrease in the graduate return, 𝐺, of 𝜈 

units. Both mechanisms leading to ETV effects can lower graduation rates. The 𝜂 penalty can 

lower available time to the point that supplying the often desired !!,!
!!

 units of academic labor is no 

longer feasible or no longer optimal. The decrease in  𝐺 can also make enrollment suboptimal if it 

moves the value of continuing below a certain threshold. Both penalties should lead to 

heterogeneous non-linear effects on high school completion and credits earned since the 

simulated agent’s actions post ETV are also highly affected by other agent-specific parameters.  

 

5   Effects Estimates 

A. True Causal Effects 
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In the 1980s (2000s) data, 15.8 percent (17.5 percent) of the simulated sample 

experienced some exposure to violence over the 4-year period. Of those exposed, 93.0 percent 

(89.8 percent) of the 1980s (2000s) sample experienced ETV event(s) in exactly one of the four 

year intervals. Of the 1980s (2000s) sample, 6.5 percent (9.6 perent) experienced ETV event(s) 

in 2 of the 4 years, and the remaining percentage experienced ETV events in 3 of the 4 years. 

Figure 2 summarizes the distribution of ETV exposure over simulated high school years. In both 

samples we observe a saw-tooth pattern, where exposure falls in year 2, rises dramatically in 

year 3, and then falls slightly in year 4. Overall, exposure rates are uniformly higher in the 2000s 

data. 

The simulated environment allows the estimation of true effects by comparing observed 

outcomes with observable counterfactual outcomes. For our sample of simulated respondents 

who were exposed to violence, we calculate the true average effect on an outcome as  

Δ𝑦!"# = 𝑦!"# −   𝑦~!"# . 

We also calculate the average percent change in the outcome as  

%Δ𝑦!"# =
𝑦!"# − 𝑦~!"#   

𝑦~!"#
. 

 We wish to examine four measures: (1) periods employed during high school; (2) total time 

devoted to wage labor; (3) total time devoted to academic labor; and (4) high school completion.   

Tables 4a and 4b summarize the calculated effects for both cohorts. In the 2000 cohort 

data, we observe negative ETV effects on all listed outcomes. ETV leads to a decrease in years 
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of work and hours worked, as well as a decrease in time devoted to academic labor and a lower 

proportion of students who graduated in four years. We see generally similar findings for the 

1980s data with some differences. First, the full 1980s cohort works all four years of high school 

regardless of ETV. This yields no effect on employment. We do, however, see a decrease in 

hours, implying the sample continues to work, but may supply fewer hours of wage labor given 

ETV exposure. Relative to the 2000 cohort, ETV leads to a much greater decrease in academic 

labor hours, and a greater decrease in graduation rates. 

Simulated agents compare the expected return of enrolling in school versus not enrolling 

in school each simulated year, and choose the option with the highest value. Simulated agents in 

borderline regions will not enroll if they experience ETV in a given period, but will enroll 

otherwise. Roughly 42 percent of the sample falls in the borderline region for the 1980s cohort, 

while only 23 percent of the sample is borderline for the 2000s cohort. In addition to these 

distributional differences, the 1980s cohort suffers from a selection problem such that simulated 

agents who are already at risk of dropping out are roughly 20% more likely to experience ETV. 

These differences lead to the noticeable differences in effects between cohorts. The analysis 

shows decreases in all outcome measures, with the exception of periods worked for the 1980s 

cohort. Below we use methods discussed above to attempt to recover the same information 

disclosed by the causal analysis presented here.  

 

B. Causal Effect Estimates 
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 This section employs methods described above to infer the causal effect of ETV on a set 

of outcomes for each cohort. The true counterfactual effects are also listed and compared to the 

effect estimates from various methods. True counterfactual effects on observables differ between 

cohorts as a result of differences in the distributions of latent and demographic variables. Tables 

5a and 5b show controlled and uncontrolled regression coefficients, whether the true effect falls 

within the 95 percent confidence interval of the effect estimate, and whether the effect estimate 

has the same sign as the true effect. Controls include mother’s education, father’s education, 

race, respondent wage offer, household structure, parental income, and community of residence. 

There is no temporal variation in the control variables.  

 Estimates from the employed methods generally had the same sign as the true effect. The 

instrumental variables estimates were the only exception. Four of the 8 instrumental variables 

estimates (where the instrument was an exogenous policy enacted that lead to a sharp increase or 

decrease in the likelihood of experiencing ETV) were positive when the true effect was negative. 

There were mixed results concerning the success with which a 95 percent confidence interval 

held the true effect. OLS and propensity score matching estimates appear to be most successful 

at generating a 95 percent confidence interval that held true effect estimates. The point estimates 

from fixed effects estimates often appeared to be fairly close to the true parameter values, but in 

this case the smaller standard errors from fixed effects estimation lead to very small confidence 

intervals that often excluded the true values. An informal assessment of estimates from this 

simulation may lead one to conclude that OLS, Propensity Score Matching, and fixed effects 
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estimates were most successful at approximating the true causal effect of ETV on the listed 

outcomes, while instrumental variables estimators were least reliable. 

Based on these estimates, we conclude that ETV leads to negative shocks to the 

examined outcomes. In the year following a ETV, simulated respondents are less likely to enroll 

in school. Over the course of the high school career, ETV is associated with less overall time 

devoted to academic and wage labor, and a lower probability of completing high school in four 

years. There is no effect of ETV on the number of high school years in which a simulated 

respondent was employed in the 1980s data, but an apparent negative effect is present in the 

2000s simulated data. Other estimates also tend to vary between cohorts.  While ETV likely 

causes negative change in the outcomes studied, we have limited accuracy with which we can 

estimate the magnitude of the associated changes.4  

 In applied life course research, we generally do not fully understand the role of 

differences in the distribution of observable and unobservable variables, as well as differences in 

the treatment selection process over time. In this simulation, the effect of ETV on college 

graduation was 13 times larger in the 2000s simulated cohort than in the 1980s simulated cohort. 

There are noticeable differences in the magnitude of true effects on all outcomes between 

cohorts. It is possible that the distribution of household income and respondent wage offers 

(which differ across the two cohorts) are largely responsible for differences in the effect of ETV 

on periods employed. Other differences between the cohorts may be responsible for the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 For simplicity, we do not consider heterogeneity in effects here. We assume that effects are homogenous. In 
applied life course, research, however, researchers should routinely question the underlying homogeneity 
assumption. 
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difference in estimates. In the 1980s data, ETV is a completely random process that is 

independent of individual characteristics. In the 2000s data, ETV is slightly more likely to 

happen to simulated respondents who have a stronger taste for leisure than consumption (i.e. 

𝛽! > 𝛼!). There was also an overall shift in unobservable preference parameters between the 

periods. The 1980s cohort has a stronger preference for leisure, while the 2000s cohort has a 

higher preference for consumption. In this model a taste for consumption is more conducive to 

continued enrollment and eventual graduation. The unobservable shift in personal preferences 

and the selection mechanism in the 2000s data may explain a large part of the difference in 

sensitivity of the educational tract to ETV exposure between cohorts.5 

 

C. Mediating Mechanisms 

 We often care about both the effect of a treatment and the mechanism mediating that 

effect. The data were generated such that ETV leads to a lower expected return to education 

(operationalized as a change in a latent variable denoting the personal valuation placed on 

graduating), and a decrease in the amount of productive time available for academic and wage 

labor. A lower valuation on graduation implies a lower likelihood of enrolling in school in any 

period, and thus a lower likelihood of graduating in four periods/years. The lost time may have 

the indirect effect of forcing a simulated respondent to choose between employment and 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 We do not assess how exposure to the treatment over time produces variation in individual effects. It is likely 
that ETV that occurs early in childhood, relative to middle childhood, relative to adolescence might influence the 
effects on our outcomes of interest.  
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enrollment. In this simulated example, effects are mediated by constraints and latent measures 

that are unobservable to the researcher. Fully recovering these mechanisms is likely impossible 

with only the observable measures in the data. It is also often the case in life course research that 

multiple mechanisms may work independently or jointly to produce a net effect of interest. The 

causal DAG presented in Figure 1 depicts the effect of ETV on the probability of high school 

completion. We enclosed unobserved variables in ovals. There is a correlation between 

experiencing ETV and the latent value of high school completion, both of which are correlated 

with neighborhood and family characteristics. Conditioning on neighborhood and family 

characteristics implies conditional independence between ETV exposure and latent personal 

valuations on high school completion. Controlling for neighborhood and family characteristics 

allows us to view the variation in ETV as exogenous, and identify the causal effect of ETV on 

enrollment decisions and graduation.  This estimate would include effects of all mediating 

mechanisms. In these simulated data, we speculate that the mediating mechanism might involve 

the negative effect on both labor variables, such that ETV leads to a short term drop in 

productivity that results in a decrease in the amount of time devoted to academic and wage labor, 

and a lower likelihood of enrolling in school in the coming academic year. As a result of the 

productivity drop and decreased likelihood of enrolling, youth fall behind in school and many are 

unable to make up the difference in time to graduate in the four-year window. This leads to a 

lower four-year graduation rate among those who have experienced ETV. If all variables below 

were observable, we could decompose the mechanisms mediating ETV effects by determining 

what proportion of the effect works through the devaluation of education, and what portion is 
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attributable to a loss of productive and leisure time. In this case, leisure time and time availability 

are unobserved. Quantitative researchers are often limited as to which available theories for 

mediating mechanisms can be empirically tested.  

 

6   Conclusion 

This chapter has discussed some of the challenges and strategies underlying life course 

research aimed at causal inference. Relationships among variables in empirical data alone cannot 

establish causality. Causal inference requires some knowledge about the data generating process 

to support an assumption of exogenous variability in our treatment of interest. This may be 

controlled randomization of the assignment to treatment, exogeneity of a natural treatment 

assignment process, or conditional independence of treatment assignments after controlling for 

some set of observables. Research aimed at causal inference often involves trying to understand 

complex and dynamic processes that depend upon both observed and unobserved factors. We 

discuss challenges to empirical estimation that arise due to selection effects. We show and 

discuss how violations of model assumptions may lead to bias in parameter estimates, and 

discuss common estimation techniques. These include ordinary least squares regression, discrete 

choice models, propensity score matching models, fixed effects models, and instrumental 

variables models.  Many other potential estimation procedures were omitted from this discussion 

for simplicity. Additional challenges may include estimating effects with complex 

counterfactuals and evaluating heterogeneity in effects. Life course research also often involves 
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assessing how effects vary over time, as well as assessment of mechanisms that intervene and 

help explain associations between treatments and outcomes. 

We generate simulated data that models a complex process over time, and employ the 

listed techniques to recover the dynamics and effects generated by our manufactured process. 

Our simulated process considers the effect of exposure to gun violence on the educational 

outcomes of simulated respondents. We construct a process where simulated respondents have 

unobserved preferences over consumption, leisure, and high school completion and varying 

levels of unobserved academic ability. Simulated respondents are characterized by demographic 

characteristics such as neighborhood of residence, racial classification, household income, and 

parental education levels that are correlated with their preferences and the monetary resources 

that determine consumption levels. In each of four simulated periods, respondents decide 

whether to work in the labor market full-time, work and go to school, or go to school without 

working. Offering sufficient levels of academic labor over the four-year period results in 

graduation. Our treatment of interest, exposure to violence (ETV), flags simulated respondents 

who have seen a person shot or shot at in the previous year.  

The treatment has two simulated effects. First, it decreases subjective assessments of 

personal longevity, which decreases the horizon over which one would expect to reap the returns 

to education, therefore lowering the overall expected return to education. This is operationalized 

as a 3-unit decrease in the simulated agent’s personal unobserved valuation of graduation. 

Second, ETV serves as a traumatic experience that depresses productivity in the short run. This 

is operationalized as a loss of time that could have otherwise been allocated to leisure, academic 
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labor, or wage labor. The loss of time and devaluation of education together make the choice to 

enroll in school less likely, which leads to a lower four-year simulated graduation rate for those 

who experience ETV. This process was simulated for two cohorts. In one cohort, assignment to 

treatment has an endogenous aspect where individuals who have a stronger taste for leisure than 

consumption are a percentage point more likely to experience treatment above the ETV exposure 

rates defined by their neighborhood of residents. This yields a slight selection effect where 

individuals who are already more likely to dropout are also more likely to experience an event 

that further encourages early school exit. The cohorts also differ along the distribution of 

demographic variables that govern familial characteristics. 

We aimed to understand the dynamics behind the effect of ETV on 4-year high school 

completion using the methods described earlier in the chapter. We found that ETV leads to a 

decrease in the 4-year high school graduation rates. We also find that ETV is associated with a 

drop in wage and academic labor supply, which lead to the inference that time may be one of the 

mediating factors transmitting the effect of ETV on 4-year high school completion. We were 

unable to uncover the second mechanism, which affects graduation due to a decrease in the 

personal valuation of high school completion. The respondents’ simulated valuation on 

education is an unobserved variable, and for that reason it could not be included in regression 

models. Estimates for the effects of ETV differed greatly between cohorts even though the coded 

effect of ETV was the same in both settings. In both simulations, ETV lead to a 3 point decrease 

in the valuation of education and a 20 percent decrease in time available to allocate between 

labor and leisure. These direct effects lead to very different indirect effects of ETV on labor 
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supplies, per period enrolment, and graduation probabilities. We concluded that differences in 

the distributions of underlying variables lead ETV to have vastly different effects between 

cohorts.  

Of the methods employed, OLS regression and propensity score matching most 

consistently produce results that were close to the true effects calculated through counterfactual 

simulation. Fixed effects estimates were also reasonably accurate. Instrumental variables models 

had the weakest performance. In our simulation, we found that simple linear methods were 

sufficient for understanding the basic causal dynamics of interest in a highly non-linear model 

that includes a range of unobserved variables. This lends confidence in our ability to use these 

tools to correctly discern the dynamics between complex real-world processes, and the 

underlying observable mechanisms motivating causal relationships. Still, the performance of 

these estimators in this setting should not be generalized to other settings. 
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Appendix A. Simulation Process 

This section explains the mathematical problem solved by simulated agents in the creation of 

the test data. Agents have preferences over consumption, leisure, and high school completion. They 

make choices each period over the allocation of time towards, education, labor or leisure given 

constraints on time availability and the consumption benefits of wage labor. The sequence of choices 

determines whether they graduate in four periods. This provides a non-linear data generating process 

with computable counterfactual outcomes, where we can assess our ability to make correct causal 

inference using the linear models presented above. 

 

Formally, simulated agent 𝑖 solve. 

𝑉 𝑙!,!! , 𝑙!,!! , 𝑥!,! , 𝑒!,! , 𝑐!,! ,𝑎! = argmax
{!!,!
! ,      !!,!

! ,      !!,!}
   𝑥!,!

!! 1− 𝑙!,!! − 𝑙!,!!
!! + 𝐺!,! ⋅ 𝟙 𝑙!,!! ≥

𝑐!,!
𝑎!

 

(4) 

subject to:                                 𝑥!,! ≤ 𝑙!,!!𝑤! + 𝑒!    (5)  

                                                          0≤ 1− 𝑙!,!! − 𝑙!,!!                       (6) 

                                  𝑥!,! ≥ 0, 0 ≤ 𝑙!,!! ≤ 1  , 0 ≤ 𝑙!,!! ≤   1,𝛼 > 0,𝛽 > 0                  (7) 

The objective function (4) takes the form of a Cobb-Douglas utility function expressing preferences 

over consumption, 𝑥!,! , and leisure, 1− 𝑙!,!! − 𝑙!,!! ,  plus an additional additive component capturing gains 

from graduation. Constraint (5) is a budget constraint limiting present period consumption to what is 

affordable given endowment 𝑒! and earned income, 𝑙!,!!𝑤!, where 𝑤! is a wage rate.. Endowments are a 

small but fixed percentage of household income, while wage offers are random. 𝐺!,! is the time 𝑡  value 
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that agent 𝑖 places on eventual graduation. The indicator function shows that agent 𝑖  only expects to 

receive 𝐺!,! if he or she supplies some minimum amount of academic labor. Constraints (6) and (7) 

stipulate that all time and consumption allocations must be non-negative. 

The solution to this problem takes the following form given state 𝑠!,! = 𝑒!,! , 𝑐!,! ,𝑎!,𝐺!,! : 

 

𝑙!,!!∗ =

𝑐!,!
𝑎!

𝑖𝑓 𝑉 𝑙!,!  ! = 0, 𝑙!,!|!!,!  ! !!
!∗ , 𝑥!,!|!!,!  ! !!

∗ ,  𝑠!,! ≤   𝑉 𝑙!,!  ! =
𝑐!,!
𝑎!
, 𝑙
!,!|!!,!  

! !
!!,!
!!

!∗ , 𝑥
!,!|!!,!  

! !
!!,!
!!

∗ ,  𝑠!,!   𝑎𝑛𝑑  
𝑐!,!
𝑎!

≤ 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(8) 

𝑙!,!!∗ =
!!!! !!!!,!

!∗ !!!!!
!!(!!!  !!)

       (9) 

𝑥!,!∗ = 𝛼!
!!   !!!!,!

!∗ !!!
!!!  !!

        (10) 

The intuition behind this solution is as follows. The return function for academic labor is a non-

differentiable step function and requires special care for that reason. There are only three possible 

optimal values for academic labor. First, one could supply !!,!
!!

 units of academic labor, which is just 

enough to receive the expected return 𝐺. Any time committed beyond this amount has no return, and 

would be better spent towards wage labor or leisure since 𝛼! > 0 and  𝛽! > 0. If it turns out that the 

simulated agent cannot feasibly supply the desired amount of academic labor such that  

𝑐!,!
𝑎!

> 1 
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or that the agent has a higher present period gain if she devotes the time to wage labor or leisure such 

that 

  𝑉 𝑙!,!  ! = 0, 𝑙!,!|!!,!  ! !!
!∗ , 𝑥!,!|!!,!  ! !!

∗ ,  𝑠!,! >   𝑉 𝑙!,!  ! =
𝑐!,!
𝑎!
, 𝑙
!,!|!!,!  

! !
!!,!
!!

!∗ , 𝑥
!,!|!!,!  

! !
!!,!
!!

∗ ,  𝑠!,!  

then 𝑙!,!!∗ = 0 must be the optimal academic labor supply. In this case, any time allocation above 0 has a 

higher return as wage labor time or leisure time. From here, we utilize the concavity, continuity, and 

differentiability of the return function in 𝑙!,!! ,      𝑥!,!  to solve for (9) and (10) in terms of parameters and 

𝑙!,!!∗. These formulas are sufficient for calculating the current period return to continuing education, and 

the current period return to dropping out. Simulated agents choose the option with the highest present 

period return.  

 This model adds interesting dynamics to the data. First, individual actions are highly sensitive to 

specifications of 𝛼! ,𝛽!,and 𝐺!,! all of which are unobserved by the researcher. Also, these parameters 

are correlated with familial and community characteristics. Endowments 𝑒! are a function of household 

income. The dependence of these parameters on family characteristics should lead to an estimable 

degree of intergenerational transmission of advantage.  
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Table	  1.	  Time-‐Varying	  Treatment	  Exposure	  and	  Outcome	  Measurement	  

	   	  

Outcome	  
measurement	  

	   	  
Time-‐invariant	   Time-‐varying	  	  

Treatment	  
exposure	  

Time-‐invariant	  

𝐶𝑎𝑠𝑒  1  
δ! = 𝑦!!!! − 𝑦!!!!	  
	  

𝐶𝑎𝑠𝑒2  
δ!,! = 𝑦!,!!!! − 𝑦!,!!!!	  
	  

Time-‐varying	  	  

𝐶𝑎𝑠𝑒  3  
δ!
!,! = 𝑦!!!! − 𝑦!!!!	  
	  

𝐶𝑎𝑠𝑒  4  
δ!"
!,! = 𝑦!,!!!! − 𝑦!,!!!!	  
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Table 2. Descriptive Statistics for Simulation Data 

	  	  	   	  	   1980	  Cohort	  
Mean/Proportion	  

2000	  Cohort	  
Mean/Proportion	  

Gender	  

	   	  
	  

Female	   49.65	   50.76	  

	  
Male	   50.35	   49.24	  

	   	   	   	  Race/Ethnicity	  

	   	  
	  

White	   39.5	   39.42	  

	  
Black	   25.23	   25.31	  

	  
Asian	   10.91	   10.9	  

	  
Hispanic	   24.36	   24.38	  

	   	  
	   	  

Mother's	  Education	   	   	  

	  
Less	  Than	  High	  School	   39.88	   29.55	  

	  
High	  School	  Degree	   36.74	   23.71	  

	  
College	  Degree	   14.98	   26.71	  

	  
Graduate/Professional	  Degree	   8.4	   20.04	  

	   	  
	   	  

Father's	  Education	   	   	  

	  
Less	  Than	  High	  School	   38.71	   29.08	  

	  
High	  School	  Degree	   38.23	   24.81	  

	  
College	  Degree	   15.25	   26.18	  

	   Graduate/Professional	  Degree	   7.82	   19.94	  

	   	  
	   	  

Household	  Income	  

	   	  
	  

Mean	   $45,702	  	   $59,709	  	  

	   	   	   	  
	  

<$20,000	   21.68	   16.52	  

	  
$20,000	  	  to	  $50,000	   37.68	   32.45	  

	  
$50,000	  to	  $100,000	   29.91	   29.98	  

	  
$100,000	  to	  $200,000	   10.73	   17.2	  

	  
$200,000+	   0	   2.34	  

	   	   	   	  Community	  of	  Residents	  
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Community	  1	   20.94	   26.16	  

	  
Community	  2	   23.46	   22.38	  

	  
Community	  3	   19.33	   17.04	  

	  
Community	  4	   14.76	   12.62	  

	  
Community	  5	   21.51	   21.79	  

	   	  
	   	  

Household	  Structure	   	   	  

	  
Both	  Parents,	  Married	   77.05	   69.87	  

	  
Mother	  headed	  HH	   15.79	   22.92	  

	  
Both	  Parents,	  Cohabiting	   7.16	   7.2	  

	  
	   	   	  

Model	  Outcomes	   	   	  

	  
Periods	  Employed	   4.00	   3.95	  

	  
Total	  Wage	  Labor	  Over	  4	  Periods	   1.23	   1.23	  

	  
Total	  Academic	  Labor	  Over	  4	  Periods	   0.79	   0.82	  

	  
Four	  Period	  Graduation	  Rate	   0.56	   0.59	  

	  
Total	  Periods	  Enrolled	  in	  School	   3.38	   3.52	  

	   	   	   	  N	  

	   	   	  
	  

Respondents	   7,003	   7,023	  

	  
Families	   5,250	   5,265	  

	  
Respondents	  with	  siblings	   3,290	   3,296	  

	  
Families	  with	  multiple	  kids	   1,537	   1,538	  	  
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Table 3. ETV Probabilities  

Brackets indicate periods where a policy was enacted that lead to a sharp change in exposure rates. 

1980s	  ETV	  Probabilities	  By	  Community	  and	  Period	  

	   	   	  
Community	  

	   	  	  	   	  	   1	   2	   3	   4	   5	  
Period	   1	   3	   2	   2	   4	   6	  

	  
2	   3	   1	   2	   4	   6	  

	  
3	   3	   2	   [4]	   [8]	   [12]	  

	  	   4	   3	   1	   [4]	   [8]	   [12]	  
 

2000s	  ETV	  Probabilities	  by	  Community	  and	  Period	  

	   	   	  
Community	  

	   	  	  	   	  	   1	   2	   3	   4	   5	  
Period	   1	   3	   2	   2	   8	   12	  

	  
2	   3	   1	   2	   8	   12	  

	  
3	   3	   2	   [4]	   [4]	   [6]	  

	  	   4	   3	   1	   [4]	   [4]	   [6]	  
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Table 4a. Data True Effect Calculations, 1980s 

	  

Observed	  
Mean	  

Counterfactual	  
Mean	  

ETV	  
	  Effect	  

Percent	  
Change	  Due	  
to	  Treatment	  

Total	  years	  employed	  during	  HS	   4.000	   4.000	   0.000	   0.000	  

Total	  Hours	  devoted	  to	  wage	  labor	   1.223	   1.253	   -‐0.030	   -‐0.024	  

Total	  hours	  devoted	  to	  academic	  labor	   0.602	   0.749	   -‐0.147	   -‐0.196	  

Enrollment	  by	  Period	   0.111	   0.802	   -‐0.692	   -‐0.863	  

Graduated	  from	  HS	  in	  4	  years	   0.321	   0.553	   -‐0.232	   -‐0.419	  
	  

Table 4b. Data True Effect Calculations, 2000s 

	  

Observed	  
Mean	  

Counterfactual	  
Mean	  

ETV	  
	  Effect	  

Percent	  
Change	  Due	  
to	  Treatment	  

Total	  years	  employed	  during	  HS	   3.914	   3.950	   -‐0.036	   -‐0.009	  
Total	  Hours	  devoted	  to	  wage	  labor	   1.158	   1.257	   -‐0.099	   -‐0.078	  
Total	  hours	  devoted	  to	  academic	  labor	   0.769	   0.790	   -‐0.021	   -‐0.027	  
Enrollment	  by	  Period	   0.768	   0.860	  	  	   -‐0.093	   -‐0.108	  
Graduated	  from	  HS	  in	  4	  years	   0.545	   0.562	   -‐0.018	   -‐0.031	  
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Table 5a. Counterfactual and Estimated Effects, 1980s 

Outcome	   Method	  

True	  
Counterfactual	  

Effect	  
Estimate	  

Uncontrolled	  
Estimate	  	  	  	  	  	  	  
(Std	  Error)	   	  	   	  	  

Controlled	  
Estimate	  
(Std	  Error)	   	  	  

True	  
Estimate	  
within	  
95%	  C.I.	  	  

Estimate	  
has	  the	  
correct	  
sign	  

	   	   	   	   	   	   	   	   	   	  Periods	  Employed	   0	  
	   	   	   	   	   	   	  

	  
OLS	  Regression	  

	  
0	  

	   	  
0	  

	  
+	   ≈	  

	   	   	  
0	  

	   	  
0	  

	   	   	  

	  

Propensity	  Score	  
Matching	  

	   	   	   	  
0	  

	  
+	   ≈	  

	   	   	   	   	   	  
0	  

	   	   	  Total	  Wage	  Labor	   -‐0.03	  
	   	   	   	   	   	   	  

	  
OLS	  Regression	  

	  
-‐0.004	   	  	   	  	   -‐0.010	   	  	   	  	   ≈	  

	   	   	  
(0.0099)	  

	   	  
(0.0072)	  

	   	   	  

	  
Fixed	  Effects	  

	   	   	  
	  	   0.003	  

	  
	  	  

	  

	   	   	   	   	   	  
(0.0011)	  

	   	   	  

	  

Instrumental	  
Variables	  

	  
0.288	   ***	   	  	   0.349	   ***	   	  	  

	  

	   	   	  
(0.0244)	  

	   	  
(0.0237)	  

	   	   	  

	  

Propensity	  Score	  
Matching	  

	  
-‐-‐-‐	  

	   	  
-‐0.047	   **	   +	   ≈	  

	   	   	  
-‐-‐-‐	  

	   	  
(0.0145)	  

	   	   	  

	   	   	   	   	   	   	   	   	   	  Total	  Academic	  Labor	   -‐0.147	  
	   	   	   	   	   	   	  

	  
OLS	  Regression	  

	  
-‐0.217	   ***	   	  	   -‐0.209	   ***	   	  	   ≈	  

	   	   	  
(0.0100)	  

	   	  
(0.0085)	  

	   	   	  

	  
Fixed	  Effects	  

	  
-‐0.176	   ***	   	  	   -‐-‐-‐	  

	   	  
≈	  

	   	   	  
(0.0029)	  

	   	  
-‐-‐-‐	  

	   	   	  

	  

Instrumental	  
Variables	  

	  
-‐0.728	   ***	   	  	   -‐0.388	   ***	   	  	   ≈	  

	   	   	  
(0.0378)	  

	   	  
(0.0405)	  

	   	   	  

	  

Propensity	  Score	  
Matching	  

	  
-‐-‐-‐	  

	   	  
-‐0.121	   ***	   +	   ≈	  

	   	   	  
-‐-‐-‐	  

	   	  
(0.0171)	  
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Enrollment	  by	  Period	   -‐0.692	  
	   	   	   	   	   	   	  

	  
OLS	  Regression	  

	  
-‐0.673	   ***	   	  	   -‐0.680	   ***	   +	   ≈	  

	   	   	  
(0.0067)	  

	   	  
(0.0066)	  

	   	   	  

	  
Fixed	  Effects	  

	  
-‐0.653	   ***	   	  	   -‐-‐-‐	  

	   	   	  

	   	   	  
(0.0068)	  

	   	  
-‐-‐-‐	  

	   	   	  

	  

Instrumental	  
Variables	  

	  
-‐3.578	   ***	   	  	   -‐2.693	   ***	   	  	   ≈	  

	   	   	  
(0.1625)	  

	   	  
(0.1869)	  

	   	   	  

	  

Propensity	  Score	  
Matching	  

	  
-‐-‐-‐	  

	   	  
-‐0.733	   ***	   	  	   ≈	  

	   	   	  
-‐-‐-‐	  

	   	  
(0.0152)	  

	   	   	  

	   	   	   	   	   	   	   	   	   	  

	   	   	   	   	   	   	   	   	   	  Graduated	  in	  four	  years	   -‐0.232	  
	  

	  	  
	   	   	   	   	  

	  
OLS	  Regression	  

	  
-‐0.295	  

	  
	  	   -‐0.286	   ***	   	  	   ≈	  

	   	   	  
(0.0159)	   	  	  

	  
(0.0154)	  

	   	   	  

	  
Probit	  

	  
-‐0.762	  

	  
	  	   -‐0.637	   ***	   	  	   ≈	  

	   	   	  
(0.0429)	   	  	  

	  
(0.0462)	  

	   	   	  

	  
Logit	  

	  
-‐1.227	  

	  
	  	   -‐1.043	   ***	   	  	   ≈	  

	   	   	  
(0.0705)	  

	   	  
(0.0763)	   	  	  

	   	  

	  

Instrumental	  
Variables	  

	  
-‐2.147	  

	  
	  	   0.000	   	  	   +	  

	  

	   	   	  
(0.1536)	  

	   	  
(0.1797)	  

	   	   	  

	  

Propensity	  Score	  
Matched	  

	  
-‐-‐-‐	  

	   	  
-‐0.188	   ***	   +	   ≈	  

	  	   	  	   	  	   -‐-‐-‐	   	  	   	  	   (0.0236)	   	  	   	  	   	  	  
Notes: Models include the following control variables: Mother’s education, father’s education, race, family structure, 

household income, community of residence, and simulated respondent wage offers. Asterisks and daggers for p-value 

significance have the standard meaning: p<.001 = ***, p<0.01=**, p<0.05=*, p<0.1=† 
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Table 5b. Counterfactual and Estimated Effects, 2000s 

Outcome	   Method	  

True	  
Counterfactual	  
Effect	  Estimate	  

Uncontrolled	  
Estimate	  	  	  	  	  	  	  
(Std	  Error)	  

	  

Controlled	  
Estimate	  
(Std	  Error)	  

	  

True	  
Estimate	  
within	  
95%	  C.I.	  

Estimate	  
has	  the	  
correct	  
sign	  

	   	   	   	   	   	   	   	   	  Periods	  Employed	   -‐0.036	  
	   	   	   	   	   	  

	  
OLS	  Regression	  

	  
-‐0.038	   **	   -‐0.042	   **	   +	   ≈	  

	   	   	  
(0.0147)	  

	  
(0.0138)	  

	   	   	  

	  

Propensity	  Score	  
Matching	  

	   	   	  
-‐0.059	   **	   +	   ≈	  

	   	   	   	   	  
(0.0211)	  

	   	   	  Total	  Wage	  Labor	   -‐0.099	  
	   	   	   	   	   	  

	  
OLS	  Regression	  

	  
-‐0.085	   ***	   -‐0.086	   ***	  

	  
≈	  

	   	   	  
(0.0123)	  

	  
(0.0078)	  

	   	   	  

	  
Fixed	  Effects	  

	  
-‐-‐-‐	  

	  
-‐0.012	   ***	  

	  
≈	  

	   	   	  
-‐-‐-‐	  

	  
(0.0010)	  

	   	   	  

	  

Instrumental	  
Variables	  

	  
0.324	   *	   -‐0.078	   **	   +	   ≈	  

	   	   	  
(0.1324)	  

	  
(0.0245)	  

	   	   	  

	  

Propensity	  Score	  
Matching	  

	  
-‐-‐-‐	  

	  
-‐0.106	   ***	  

	  
≈	  

	   	   	  
-‐-‐-‐	  

	  
(0.0179)	  

	   	   	  

	   	   	   	   	   	   	   	   	  Total	  Academic	  Labor	   -‐0.021	  
	   	   	   	   	   	  

	  
OLS	  Regression	  

	  
-‐0.058	   ***	   -‐0.061	   ***	  

	  
≈	  

	   	   	  
(0.0095)	  

	  
(0.0081)	  

	   	   	  

	  
Fixed	  Effects	  

	  
-‐-‐-‐	  

	  

-‐
0.02645392	   ***	   +	   ≈	  

	   	   	  
-‐-‐-‐	  

	  
0.00288027	  

	   	   	  

	  

Instrumental	  
Variables	  

	  
-‐1.406	   ***	   -‐0.006	  

	  
+	   ≈	  

	   	   	  
(0.3281)	  

	  
(0.0359)	  

	   	   	  

	  

Propensity	  Score	  
Matching	  

	  
-‐-‐-‐	  

	  
-‐0.036	   *	   +	   ≈	  

	   	   	  
-‐-‐-‐	  

	  
(0.0147)	  

	   	   	  Enrolment	  by	  Period	   -‐0.093	  
	   	   	   	   	   	  

	  
OLS	  Regression	  

	  
-‐0.119	   ***	   -‐0.121	   ***	  

	  
≈	  

	   	   	  
(0.0092)	  

	  
(0.0078)	  

	   	   	  

	  
Fixed	  Effects	  

	  
-‐-‐-‐	  

	  
-‐0.081	   ***	  

	  
≈	  

	   	   	  
-‐-‐-‐	  

	  
(0.0061)	  

	   	   	  

	  

Instrumental	  
Variables	  

	  
-‐7.512	   ***	   0.525	   ***	  

	   	  



R.	  Moore	  and	  J.	  Brand	  
	  
	  
	  

57	  
	  
	  

	   	   	  
(1.6940)	  

	  
(0.1096)	  

	   	   	  

	  

Propensity	  Score	  
Matching	  

	  
-‐-‐-‐	  

	  
-‐0.109	   ***	   +	   ≈	  

	   	   	  
-‐-‐-‐	  

	  
(0.0158)	  

	   	   	  

	   	   	   	   	   	   	   	   	  Graduated	  in	  four	  years	   -‐0.018	  
	   	   	   	   	   	  

	  
OLS	  Regression	  

	  
-‐0.057	   ***	   -‐0.057	   ***	  

	  
≈	  

	   	   	  
(0.0158)	  

	  
(0.0152)	  

	   	   	  

	  
Probit	  

	  
-‐0.146	   ***	   -‐0.071	  

	   	  
≈	  

	   	   	  
(0.0404)	  

	  
(0.0435)	  

	   	   	  

	  
Logit	  

	  
-‐0.235	   ***	   -‐0.114	  

	   	  
≈	  

	   	   	  
(0.0647)	  

	  
(0.0708)	  

	   	   	  

	  

Instrumental	  
Variable	  

	  
-‐-‐-‐	  

	  
0.000	  

	   	   	  

	   	   	  
-‐-‐-‐	  

	  
(0.1736)	  

	   	   	  

	  

Propensity	  Score	  
Matching	  

	  
-‐-‐-‐	  

	  
-‐0.045	   †	  

	  
≈	  

	   	   	  
-‐-‐-‐	  

	  
(0.0231)	  

	   	   	   

Notes: Models include the following control variables: Mother’s education, father’s education, race, family structure, 

household income, community of residence, and simulated respondent wage offers. Asterisks and daggers for p-value 

significance have the standard meaning: p<.001 = ***, p<0.01=**, p<0.05=*, p<0.1=† 
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Figure	  1.	  DAG	  Causal	  Model	  of	  Effects	  of	  ETV	  on	  High	  School	  Graduation	  
	  

	  
 

Figure 2. Proportion	  of	  Sample	  Experiencing	  ETV	  by	  year	  
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