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Abstract 

While there is strong evidence for productivity-driven selection into exporting, previous 

research has mostly failed to identify export-related efficiency gains within plants. This non- 

result is derived from revenue productivity (TFPR), thus also reflecting pricing decisions of 

exporters. Using a census panel of Chilean manufacturing plants, we compute plant-product  

level marginal cost as an efficiency measure that is not affected by output prices. For export 

entrants, we find within-plant efficiency gains of 15-25%. Because markups remain relatively 

stable after export entry, most of these gains are passed on to customers in the form of lower 

prices,  and are thus not reflected by TFPR. These results are confirmed when we use tariffs      

to predict the timing of export entry. We also find sizeable efficiency gains for tariff-induced 

export expansions of existing exporters. Only half of these gains are reflected by TFPR, due to a 

partial rise in markups. Our results thus suggest that gains from trade are substantially larger than 

previously documented. Evidence suggests that a complementarity between exporting and 

investment in technology is an important driver behind these gains. 
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1 Introduction 

A large literature in empirical trade has shown that exporting firms and plants are more productive 

than their non-exporting counterparts. In principle, this pattern may emerge because exporters 

have higher productivity to start with, or because they become more efficient after export entry. 

The former effect – selection across plants – has received strong theoretical and empirical support 

(c.f. Melitz, 2003; Pavcnik, 2002). On the other hand, evidence for export-related within-plant 

productivity gains is much more sparse, with the majority of empirical studies finding no effects 

(for recent reviews of the literature see Syverson, 2011; Bernard, Jensen, Redding, and Schott, 

2012). In particular, the productivity trajectory of plants or firms typically look flat around the time 

of export entry, suggesting that producers do not become more efficient after foreign sales begin.1 

This is surprising, given that exporters can learn from international buyers and have access to larger 

markets to reap the benefits of innovation or investments in productive technology (Bustos, 2011). 

In other words, there is strong evidence for a complementarity between export expansions and 

technology upgrading (c.f. Lileeva and Trefler, 2010; Aw, Roberts, and Xu, 2011). Technology 

upgrading, in turn, should lead to observable efficiency increases. Why has the empirical literature 

struggled to identify such gains? 

In this paper, we show that flat productivity profiles after export expansions are an artefact of 

the measure: previous studies have typically used revenue-based productivity, which is affected by 

changes in prices. If cost savings due to gains in physical productivity are passed on to buyers in 

the form of lower prices, then revenue-based productivity will be downward biased (Foster, Halti- 

wanger, and Syverson, 2008).2 Consequently, accounting for pricing behavior (and thus markups) 

is key when analyzing efficiency trajectories. We show in a simple framework that under a set of 

non-restrictive assumptions (which hold in our data), marginal costs are directly (inversely) related 

to physical productivity, while revenue productivity reflects efficiency gains only if markups rise. 

We then exploit an unusually rich dataset of Chilean manufacturing plants to analyze the tra- 

jectories of marginal cost, markups, and prices around export entry and export expansions. To 

derive plant-product level markups, we apply the method pioneered by De Loecker and Warzynski 

1Early contributions that find strong evidence for selection, but none for within-firm efficiency gains, include 

Clerides, Lach, and Tybout (1998) who use data for Colombian, Mexican, and Moroccan producers, and Bernard and 

Jensen (1999) who use U.S. data. Most later studies have confirmed this pattern. Among the few studies that document 

within-plant productivity gains are De Loecker (2007) and Lileeva and Trefler (2010). Further reviews of this ample 

literature are provided by Wagner (2007, 2012). 
2Recent evidence suggests that this downward bias also affects the link between trade and productivity.    Smeets 

and Warzynski (2013) construct a firm level price index to deflate revenue productivity and show that this correction 

yields larger international trade premia in a panel of Danish manufacturers. Eslava, Haltiwanger, Kugler, and Kugler 

(2013) use a similar methodology to show that trade-induced reallocation effects across firms are also stronger for 

price-adjusted productivity. 
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(2012). Because our dataset comprises physical units as well as revenues for each plant-product 

pair, we can calculate product prices (unit values). Dividing these by the corresponding markups 

allows us to identify marginal costs at the plant-product level (De Loecker, Goldberg, Khandelwal, 

and Pavcnik, 2012). This procedure is flexible with respect to the underlying price setting model 

and the functional form of the production function. Importantly, by disentangling the individual 

components, we directly observe the extent to which efficiency gains (lower marginal costs) are 

translated into higher revenue productivity (by raising markups), or passed on to customers (by 

reducing prices). 

In order to compare efficiency gains captured by the different measures, we also construct rev- 

enue productivity (TFPR) at the plant and at the plant-product level. We examine the relationship 

between efficiency and exporting, both along the extensive margin (export entry) and the inten- 

sive margin (export expansions of established exporters). We first confirm that, in line with most 

previous findings, the trajectory of TFPR is flat around export entry for average Chilean plants. 

We then disentangle this pattern and find that (i) marginal costs within plant-products drop by 

approximately 15-25% during the first three years after export entry; (ii) prices fall by a similar 

magnitude as marginal costs; (iii) markups do not change significantly during the first years fol- 

lowing export entry. Our findings suggest that export entrants do experience physical productivity 

gains, but that these are passed on to their customers. In other words, falling prices explain why 

revenue productivity is flat around export entry. 

Our results for export entrants are very similar when we use propensity score matching to 

construct a control group of plant-products that had an a-priory comparable likelihood of entering 

the export market, but continued to be sold domestically only. In addition, we show that we obtain 

quantitatively similar results when using reported variable cost measures at the plant-product level. 

This suggests that our findings are not an artefact of the methodology used to calculate marginal 

costs; in fact, the computed marginal costs are strongly correlated with the reported variable costs. 

We also discuss that our results are unlikely to be confounded by changes in product quality.3 We 

then exploit tariff changes to predict the timing of export entry. Due to the limited variation in 

tariffs, this exercise serves as a check, rather than the core of our analysis: Chile did not undergo 

major trade liberalization during our sample period. Nevertheless, the combined variation in tariffs 

over time and across 4-digit sectors is sufficient to yield a strong first stage. We confirm our 

findings from within-plant trajectories:      tariff-induced export entry is associated with marginal 
 

3The bias that may result from changes in quality works against finding efficiency gains with our methodology: 

exported goods from developing countries are typically of higher quality than their domestically sold counterparts (c.f. 

Verhoogen, 2008) and use more expensive inputs in production (Kugler and Verhoogen, 2012). Thus, exporting should 

raise marginal costs. This is confirmed by Atkin, Khandelwal, and Osman (2014) who observe that quality upgrading 

of Egyptian rug exporters is accompanied by higher input prices. 
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costs declining by 20-30%. 

We provide evidence that technology upgrading is the most likely explanation for declining 

marginal costs at export entry. This is supported by several patterns in the data. For example, we 

show that plant-level investment (especially in machinery) spikes immediately before, and during 

the first years, of export entry. In addition, marginal costs drop particularly steeply for plants that 

are initially less productive. This is in line with Lileeva and Trefler (2010), who point out that, 

for the case of investment-exporting complementarity, plants that start off from lower productivity 

levels will only begin exporting if the associated expected productivity gains are large. 

We then turn to continuing exporters. In the sample overall, we find no correlation between ex- 

port expansions and efficiency measures or markups within established exporting plants. Because 

of the relatively stable trade costs over our sample period, the ups and downs of existing exporters 

are likely due to transitory export demand shocks that are insufficient to trigger investment in new 

technology. In fact, when we restrict the sample to a sub-period when many industries experienced 

falling export tariffs, the relationship between export sales and plant efficiency becomes stronger. 

To exploit tariff-driven variations in exporting more systematically, we then use a 2SLS approach 

with export tariffs at the detailed industry level as instruments. We find strong evidence that ex- 

port expansions that are induced by tariff declines lead to lower marginal costs (by approximately 

10% over our sample period), and that this link works via investment in capital. This suggests that 

permanent changes in trade costs – in the form of stable tariff declines – induce investment in new 

technology and thereby increase efficiency. 

We also show that in the case of established exporters, pass-through of efficiency gains to 

customers is more limited than for new export entrants: about one half of the decline in marginal 

costs translate into lower prices, and the remaining half, into higher markups. Consequently, TFPR 

also increases and reflects one half of the actual efficiency gains. Thus, while the downward bias 

of TFPR is less severe for established exporters, it still misses a substantial part of efficiency 

increases. 

We discuss the differences between export entry and expansions of existing exporters. First, 

why is the former, but not the latter, associated with efficiency gains even in the absence of tariff 

declines? One interpretation is that the decision to enter the export market for the first time reflects 

(at least in expected terms) a permanent change in production, and thus incentivizes investment  

in new technology. Temporary increases in sales of existing exporters, on the other hand, are too 

short-lived to render technology upgrading profitable. Second, why are markups stable around 

export entry, but increase for established exporters after tariff-induced expansions? This pattern  

is compatible with ‘demand building’ (Foster, Haltiwanger, and Syverson, 2012) – while existing 

exporters already have a customer base abroad, new entrants may use low prices to attract cus- 
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tomers.4 To support this interpretation, we separately analyze the domestic and export price of the 

same product in a subset of years with particularly detailed pricing information. We find that for 

export entrants, the export price drops significantly more than its domestic counterpart (22% vs. 

8%). There is also some evidence in our data that markups grow as export entrants become more 

established.5 

Our findings relate to a substantial literature on gains from trade. Trade-induced competition 

can contribute to the reallocation of resources from less to more efficient producers. Bernard, 

Eaton, Jensen, and Kortum (2003) and Melitz (2003) introduce this reallocation mechanism in 

trade theory, based on firm-level heterogeneity. The empirical evidence on this mechanism is 

vast,  and summarizing it would go beyond the scope of this paper.6   In contrast,  the majority    

of papers studying productivity within firms or plants have found no or only weak evidence for 

export-related gains. Clerides et al. (1998, for Colombia, Mexico, and Morocco) and Bernard and 

Jensen (1999, using U.S. data) were the first to analyze the impact of exporting on plant efficiency. 

Both document no (or quantitatively weak) empirical support for this effect, while reporting strong 

evidence for selection of productive firms into exporting. The same is true for numerous papers 

that followed: Aw, Chung, and Roberts (2000) for Taiwan and Korea, Alvarez and López (2005) 

for Chile, and Luong (2013) for Chinese automobile producers.7 The survey article by ISGEP 

(2008) compiles micro level panels from 14 countries and finds nearly no evidence for within- 

plant productivity increases after entry into the export market. 

The few papers that have found within-plant productivity gains typically analyzed periods of 

rapid trade liberalization, such as De Loecker (2007) for the case of Slovenia and Lileeva and 

Trefler (2010) for Canada, or demand shocks due to large (and permanent) exchange rate changes 

such as Park,  Yang,  Shi,  and Jiang (2010).8            Our results illustrate why it may be more likely 

 
 

4Foster et al. (2012) provide evidence that supports this mechanism in the domestic market.     They show that by 

selling more today, firms expand buyer-supplier relationships and therefore shift out their future demand. 
5There is a longer delay between export entry and changes in markups in our data as compared to De Loecker and 

Warzynski (2012), who document increasing markups right after export entry for Slovenian firms. However, our data 

confirm De Loecker and Warzynski’s cross-sectional finding that exporters charge higher markups. 
6Two influential early papers are Bernard and Jensen (1999) and Pavcnik (2002), who analyze U.S. and   Chilean 

plants, respectively. Recent contributions have also drawn attention to the role of imports. Amiti and Konings (2007) 

show that access to intermediate inputs has stronger effects on productivity than enhanced competition due to lower 

final good tariffs. Goldberg, Khandelwal, Pavcnik, and Topalova (2010) provide evidence from Indian data that access 

to new input varieties is an important driver of trade-related productivity gains. 
7Alvarez and López (2005) use an earlier version of our Chilean plant panel.  They conclude that "Permanent 

exporters are more productive than non-exporters, but this is attributable to initial productivity differences, not to 

productivity gains associated to exporting." [p.1395] We confirm this finding when using revenue-productivity. 
8Van Biesebroeck (2005) also documents productivity gains after export entry – albeit in a less representative 

setting: among firms in sub-Saharan Africa. These gains are likely due to economies of scale, because exporting lifts 

credit constraints and thus allows sub-Saharan African firms to grow. 
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to identify within-plant gains in revenue productivity during periods of major tariff reductions: 

especially for established exporters, declining export tariffs have effects akin to a demand shock, 

which may lead to rising markups in general demand structures such as Melitz and Ottaviano 

(2008). Then, TFPR will rise because of its one-to-one relationship with markups.9 The downward 

bias in TFPR can also be tackled by computing quantity productivity (TFPQ). In a paper that 

follows ours, Lamorgese, Linarello, and Warzynski (2014) document rising TFPQ for Chilean 

export entrants.10
 

Relative to the existing literature, we make several contributions. To the best of our knowledge, 

this paper is the first to use marginal cost as a measure of efficiency that is not affected by the 

pricing behavior of exporters, and to document a strong decline in marginal costs after export 

entry and tariff-induced export expansions.11 Second, we show that disentangling the trajectories 

of prices and efficiency is crucial when analyzing export-related efficiency gains: it allows us to 

quantify the bias of the traditional revenue-based productivity measure. We find that TFPR misses 

almost all efficiency gains related to export entry, and about half the gains from tariff-induced 

export expansions. Consequently, we identify substantial export-related efficiency gains that have 

thus far passed under the radar.12 Our study thus complements a substantial literature that argues 

that within-plant efficiency gains should be expected.13 Finally, our unique dataset allows us to 

verify the methodology for computing marginal costs based on markups (De Loecker et al., 2012): 

we show that changes in computed plant-product level marginal costs are very similar to those in 

self-reported average costs. 

The rest of the paper is organized as follows. Section 2 discusses our use of marginal cost as  

a measure of efficiency and its relationship to revenue productivity; it also illustrates the empirical 

framework to identify the two measures. Section 3 describes our dataset, and Section 4 presents our 

 
 

9Potentially, markups could rise even if the actual efficiency is unchanged, causing an upward-bias of TFPR. 

However, our data suggest that rising markups generally fall short of actual efficiency gains, so that altogether, TFPR 

is downward biased. 
10We discuss below that marginal costs have an important advantage over TFPQ in the context of our study:    For 

multi-product plants (the majority of exporters), product-level marginal costs can be computed under relatively un- 

restrictive assumptions. This allows for our analysis of efficiency by decomposing prices into markups and marginal 

costs – all variables that naturally vary at the product level. 
11De Loecker et al. (2012) document a fall in the marginal cost of Indian firms following a decline in input tariffs. 
12This also applies to the few studies that have found export related changes in TFPR within plants: our results 

suggest that the actual magnitude of efficiency gains is likely larger. 
13Case studies typically suggest strong export-related efficiency gains within plants.      For example, Rhee, Ross- 

Larson, and Pursell (1984) surveyed 112 Korean exporters, out of which 40% reported to have learned from buyers in 

the form of personal interactions, knowledge transfer, or product specifications and quality control. The importance 

of knowledge transfer from foreign buyers to exporters is also highlighted by the World Bank (1993) and Evenson 

and Westphal (1995). López (2005) summarizes further case study evidence that points to learning-by-exporting via 

foreign assistance on product design, factory layout, assembly machinery, etc. 
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empirical results for export entrants, and Section 5, for continuing exporters. Section 6 discusses 

our results and draws conclusions. 

 

2 Empirical Framework 

In this section, we discuss our efficiency measures and explain how we compute them. Our first 

measure of efficiency is revenue-based total factor productivity (TFPR) – the standard efficiency 

measure in the literature that analyzes productivity gains from exporting. We discuss why this 

measure may fail to detect such gains, and show how we calculate TFPR at the plant- and at the 

product-level.  Our second measure of efficiency is the marginal cost of production, which can  

be derived at the plant-product level under a set of non-restrictive assumptions. We also discuss 

the relationship between the two measures, and under which conditions marginal costs are a valid 

efficiency measure. 

2.1 Revenue vs. Physical Total Factor Productivity 

 
Revenue-based total factor productivity is the most widely used measure of efficiency. It is calcu- 

lated as the residual between total revenues and the estimated contribution of production factors 

(labor, capital, and material inputs).14 This measure has an important shortcoming, which can be 

illustrated by its decomposition into prices, P , and physical productivity (or efficiency), A, assum- 

ing that the true A is known: ln(TFPR) = ln(P )+ln(A). If prices are unrelated to efficiency, using 

TFPR as a proxy for A merely introduces noise, and TFPR is unbiased. However, when prices re- 

spond to efficiency, TFPR is biased. For example, when facing downward-sloping demand, firms 

typically respond to efficiency gains by expanding production and reducing prices. This generates 

a negative correlation between P and A, so that TFPR will underestimate physical productivity. 

Despite these shortcomings of TFPR, the majority of studies have used this measure to analyze 

productivity gains from exporting. One practical reason is the lack of information on physical 

quantities.15 While some corrections to the estimation of production functions have been proposed, 

only a few studies have derived A directly.16 In addition, even if quantities are known, they cannot 

14Some authors have used labor productivity – i.e., revenues per worker – as a proxy for efficiency. This measure 

is affected by the use of non-labor inputs and is thus inferior to TFP when different plants combine inputs in different 

proportions (see Syverson, 2011). 
15Data on physical quantities have only recently become available for some countries (c.f. De Loecker et al., 2012; 

Kugler and Verhoogen, 2012, for India and Colombia, respectively). 
16Melitz (2000) and De Loecker (2011) discuss corrections to the estimation of the production function to account 

for cross-sectional price heterogeneity in the context of a CES demand function. Gorodnichenko (2012) proposes an 

alternative procedure for estimating the production function that models the cost and revenue functions simultaneously, 

accounting for unobserved heterogeneity in productivity and factor prices. Hsieh and Klenow (2009) recover A using a 
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△ △ 

readily be compared – a problem that is particularly severe for multi-product plants. To circumvent 

these issues, we propose marginal cost as a measure of efficiency. Next, we discuss under which 

conditions declining marginal costs reflect efficiency gains. 

2.2 Marginal Cost as a Measure of Efficiency, and its Relationship to TFPR 

 
In standard production functions, marginal costs are inversely related to efficiency (physical pro- 

ductivity) A. To illustrate this relationship, we use the generic functional form MC(Ait, wit), 

where wit is an input price index, and the subscripts i and t denote plants and years, respectively. 

The derivatives with respect to the two arguments are MC1 < 0 and MC2 > 0. Next, we can 

use the fact that prices are the product of markups (µit) and marginal costs to disentangle TFPR 

(assuming Hicks-neutrality – as is standard in the estimation of productivity): 

 

TFPRit = pitAit = µit · MC(Ait, wit) · Ait (1) 

Deriving percentage changes (denoted by △) and re-arranging yields a relationship between effi- 

ciency gains and changes in TFPR, markups, and marginal costs:17
 

 

△Ait = △TFPRit − △µit − △MC(Ait, wit) (2) 

In order to simplify the interpretation of (2) – but not in the actual estimation of MC(·) – we 

make two assumptions. First, that the underlying production function exhibits constant returns to 

scale. This assumption is supported by our data, where the average sum of input shares is very 

close to one (see Table A.1 in the appendix).  This first assumption implies that we can   separate 

△MC(Ait, wit)  =  △ϕ(wit) − △Ait, where ϕ(·) is an increasing function of input prices (see 

the proof in Appendix A). Second, we assume that input prices are unaffected by export entry or 

expansions, i.e., they are constant conditional on controlling for trends and other correlates around 

the time of export entry: △ϕ(wit) = 0. This assumption is stronger than the previous one and 

requires some discussion. Our dataset allows us to calculate input prices, and we show below in 

Section 4.5 that these do not change significantly with exporting activity – if anything, they show 

a slight increase, biasing our results against finding declining marginal costs. This is compatible 

with previous findings that more successful exporters typically produce high-quality goods that 
 

model of monopolistic competition for India, China and the United States. Foster et al. (2008) obtain A using product- 

level information on physical quantities from U.S. census data for a subset of manufacturing plants that produce 

homogeneous products. Finally, Eslava et al. (2013) and Lamorgese et al. (2014) compute TFPQ and use it to analyze 

gains from trade. 
17We slightly abuse notation, employing to represent changes in the logarithm of variables, for example, Ait  = 

d ln(Ait) = dAit/Ait. 
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require more expensive inputs (Manova and Zhang, 2012). Therefore, wit would tend to increase 

for more successful export entrants, and efficiency gains △Ait, inferred from any given △MC, 

would be larger if we allowed also for rising costs of inputs (since △Ait = △ϕ(wit) − △MC). 

With constant input prices, we obtain three simple expressions that illustrate the relationship 

between efficiency gains and changes in marginal costs, markups, and revenue productivity: 

1. △Ait = −△MC, i.e., rising efficiency is fully reflected by declining marginal costs. Note 

that this is independent of the behavior of markups. Using this equality in (2) also implies: 

2. △TFPRit = △µit, i.e., revenue productivity rises if and only if markups increase. For ex- 

ample, even if Ait rises (and MC falls), TFPR will not grow if markups remain unchanged. 

And vice-versa, if markups rise while Ait stays the same, TFPR will increase. This un- 

derlines the shortcomings of TFPR as a measure of efficiency – it can both fail to identify 

actual efficiency gains but may also reflect spurious gains due to demand-induced increases 

in markup. 

3. △TFPRit = △Ait if △µit = −△MC, i.e., changes in revenue productivity reflect the 

full efficiency gains if markups rise in the same proportion as marginal costs fall. Because 

pit = µit · MC, this will be the case if prices are constant while marginal costs fall. 

We use these insights when interpreting our empirical results below. For young exporters, the 

evidence points towards constant markups. Thus, all efficiency gains are passed on to customers, 

so that they are reflected only in marginal costs, but not in TFPR. For more mature exporters there 

is some evidence for declining marginal costs together with rising markups, meaning that at least 

a part of the efficiency gains is also reflected in TFPR. 

2.3 Estimating Revenue Productivity (TFPR) 

 
To compute TFPR, we first have to estimate the revenue production function. We specify a Cobb- 

Douglas production function with labor (l), capital (k), and materials (m) as production inputs. 

We opt for the widely used Cobb-Douglas specification as our baseline because it allows us to 

use the same production function estimates to derive TFPR and markups/marginal costs. This 

ensures that differences in the efficiency measures are not driven by different parameter estimates.18 

Following De Loecker et al. (2012), we estimate a separate production function for each   2-digit 

18As discussed below, TFPR needs to be estimated based on output in revenues, while deriving markups based on 

revenues (rather than quantities) can lead to biased results. In the Cobb-Douglas case, this bias does not affect our 

results because it is absorbed by plant-product fixed effects. Consequently, the Cobb-Douglas specification allows 

us to use estimates for both TFPR and markups (and thus marginal costs) based on the same production function 

coefficients. In Appendix D we show that the more flexible translog specification (where fixed effects do not absorb 

the bias) confirms our baseline results, which also implies that the bias is limited. 
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l k m 

− 

− − 

manufacturing sector (s), using the subsample of single product plants.19 The reason for using 

single-product plants is that we do not observe how inputs are allocated to individual outputs 

within multi-product plants. For the set of single product plants, no assumption on the allocation 

of inputs to outputs is needed, and we can estimate the following production function with standard 

plant-level information: 

 
qit =  βslit + βskit + βs mit + ωit + εit (3) 

l k m 

 

where all lowercase variables are in logs; qit are revenues of single-product plant i in year t, ωit 

is TFPR, kit denotes the capital stock, mit are material inputs, and εit represents measurement 

error as well as unanticipated shocks to output. Estimating (3) yields the sector-specific vector of 

coefficients βs = {βs, βs, βs }. 

When estimating (3) we follow the methodology by Ackerberg, Caves, and Frazer (2006, 

henceforth ACF), who extend the framework of Olley and Pakes (1996, henceforth OP) and Levin- 

sohn and Petrin (2003, henceforth LP). This methodology controls for the simultaneity bias that 

arises because input demand and unobserved productivity are positively correlated.20 The key in- 

sight of ACF lies in their identification of the labor elasticity, which they show is in most cases 

unidentified by the two-step procedure of OP and LP.21 We modify the canonical ACF procedure 

by specifying an endogenous productivity process that can be affected by export status and plant in- 

vestment. In addition, we include interactions between export status and investment in the produc- 

tivity process. Thus, the procedure allows exporting to affect current productivity either directly, or 

through a complementarity with investment in physical capital. This reflects the corrections sug- 

gested by De Loecker (2013); if productivity gains from exporting also lead to more investment 

(and thus a higher capital stock), the standard method would overestimate the capital coefficient in 

the production function, and thus underestimate productivity (i.e., the residual). Finally, using the 

set of single-product plants may introduce selection bias because plant switching from single- to 

multi-product may be correlated with productivity. Following De Loecker et al. (2012), we correct 

for this source of bias by including the predicted probability of remaining single-product, ŝit, in 

 
19The 2-digit product categories are:      Food and Beverages, Textiles, Apparel, Wood,  Paper, Chemicals, Plastic, 

Non-Metallic Manufactures, Basic and Fabricated Metals, and Machinery and Equipment. 
20We follow LP in using material inputs to control for the correlation between input levels and unobserved produc- 

tivity. 
21The main technical difference is the timing of the choice of labor.  While in OP and LP, labor is fully  adjustable 

and chosen in t, ACF assume that labor is chosen at t b (0 < b < 1), after capital is known in t 1, but before 

materials are chosen in t. In this setup, the choice of labor is unaffected by unobserved productivity shocks between 

t b and t, but a plant’s use of materials now depends on capital, productivity, and labor. In contrast to the OP and LP 

method, this implies that the coefficients of capital, materials, and labor are all estimated in the second stage. 
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the productivity process as a proxy for the productivity switching threshold.22 Accordingly, the 

law of motion for productivity is: 

 

ωit = g(ωit−1, dit−1 , d
i
 
it−1 

, ŝit−1) + ξit (4) 

 

where dx  is an export dummy, and di   is a dummy for periods in which a plant invests in physical 
it it 

capital (following De Loecker, 2013). 

In the first stage of the ACF routine, a consistent estimate of expected output ϕ̂t(·) is obtained 

from the regression 

 
qit = ϕt(lit, kit, mit; xit) + εit 

 

where ϕt(·) = βslit + βskit + βs  mit + ht(mit, lit, kit, xit), with ht(·) denoting the inverse material 

demand that we use to proxy for the unobserved productivity term.23 The vector xit contains 

all other variables that affect material demand (time and product dummies, reflecting aggregate 

shocks and specific demand components). Using the estimate of expected output, productivity can 

be computed for any candidate coefficient vector β̃
s  

as ω  (β̃ s) = ϕ̂  − (βsl 
it + βskit + βs mit). 

s s 

Estimating ωit(β̃  ) non-parametrically as a function of its own lag ω (β̃  ) and prior exporting 
and investment status (dx , di ), the productivity innovation can be recovered for each candidate 

β̃  .24 

it−1 it−1 

In the second stage, all coefficients of the production function are identified through GMM 

using the moment conditions 

 

E (ξit(β
s)Zit) = 0 (5) 

 

where ξit is the productivity innovation term from (4), and Zit is a vector of variables that com- 

prises lags of all the variables in the production function, and the current capital stock. These 

variables are valid instruments – including capital, which is chosen before the productivity inno- 

vation is observed. Equation (5) thus says that for the optimal βs, the innovation in productivity is 

uncorrelated with the instruments Zit. 

Given the estimated coefficients for each product category s (the vector βs), revenue produc- 

tivity can be calculated both at the plant level and for individual products within plants.  For   the 
 

22We estimate this probability for each 2-digit sector using a probit model, where the explanatory variables include 

product fixed effects, labor, capital, material, output price, as well as importing and exporting status. 
23We approximate the function ϕ̂t( ) with a full fourth-degree polynomial in capital, labor, and materials. 
24Following Levinsohn and Petrin (2003), we approximate the law of motion for productivity (the function g( ) 

stated in (4)) with a polynomial. 



11  

s s s 
l k m 

l k m 

s s s 
l k m 

former, we use the plant-level aggregate labor lit, capital kit, and material inputs mit. We then 

compute plant-level TFPR, ω̂it: 

ω̂it  = qit − (β  lit + β  kit + β  mit) (6) 

where qit are total plant revenues, and the term in parentheses represents the estimated contribution 

of the production factors to total output in plant i.       Note that the estimated production function 

allows for returns to scale (βs + βs + βs   ̸= 1), so that the residual ω̂it is not affected by increasing 

or decreasing returns. When computing plant-level TFPR in multi-product plants, we use the 

vector of coefficients βs that corresponds to the product category s of the predominant product 

produced by plant i. 

In order to compute product-level TFPR in multi-product plants, the individual inputs need to 

be assigned to each product j. Here, our sample provides a unique feature: ENIA reports total 

variable costs (i.e., for labor and materials) T V Cijt for each product j produced by plant i. We can 

thus derive the following proxy for product-specific material inputs, assuming that total material is 

used (approximately) in proportion to the variable cost shares: 

 

T V C where sT V C =   
T V Cijt 

  (7) 
Mijt = sijt · Mit ijt ∑

j T V C 
 
ijt 

 

Taking logs, we obtain mijt. We use the same calculation to proxy for lijt and kijt. Given these 

values, we can derive plant-product level TFPR, using the vector βs that corresponds to product j: 

 

ω̂ijt  = qijt − (β  lijt + β  kijt + β  mijt) (8) 

where qijt  are product-specific (log) revenues. 

2.4 Estimating Marginal Cost 

 
To construct a measure of marginal production cost, we follow a two-step process. First, we derive 

the product-level markup for each plant. Second, we divide plant-product output prices (observed 

in the data) by the calculated markup to obtain marginal cost. 

The methodology for deriving markups follows the production approach proposed by Hall 

(1986), recently revisited by De Loecker and Warzynski (2012). This approach computes markups 

without relying on market-level demand information. The main assumptions are that at least one 

input is fully flexible and that plants minimize costs. The first order condition of a plant’s cost 

minimization problem with respect to the flexible input V can be rearranged to obtain the markup 
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ij 
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Expenditure Share 

m 

ijt 

∂V ∂V 
∂Q(·) 

of product j produced by plant i at time t:25
 

 
 

µijt 

 
  Pijt  

≡ 
(

∂Qijt(·) Vijt 

) / 
( 

P Vt · Vijt 

)
 

 

 
  

 
, (9) 

、、/ι MCijt ∂Vijt 

、 、/ 
Qijt 

ι 
Pijt · Qijt 

 

 

 

where P  (P V ) denotes the price of output Q (input V ), and MC is marginal cost.  According   

to equation (9), the markup can be computed by dividing the output elasticity of product j (with 

respect to the flexible input) by the cost of the flexible input, relative to the sales of product j. 

In our computation of (9) we use materials (M ) as the flexible input to compute the output 

elasticity – based on our estimates of (3).26 Note that in our baseline estimation (due to its use of  

a Cobb-Douglas production function), the output elasticity with respect to material inputs is given 

by the constant term βs . Ideally, βs  should be estimated using physical quantities for inputs  and 
m m 

output in (3). However, as discussed above, this would render our results for TFPR and marginal 

cost less comparable, since differences could emerge due to the different parameter estimates. 

The Cobb-Douglas case allows us to compute markups based on revenue-based estimates of βs , 

without introducing bias in our within-plant/product analysis (see Section 2.5 for detail). Thus, 

our baseline results use the same elasticity estimates to compute both TFPR and markups. 

The second component needed in (9) – the expenditure share for material inputs – is directly 

observed in our data in the case of single-product plants.       For multi-product plants, we use the 

approximation described in equation (7) to obtain the value of material inputs P V · Vijt  = Mijt. 

Since total product-specific revenues Pijt · Qijt are reported in our data, we can then compute the 

plant-product specific expenditure shares needed in (9).27
 

Because markups are computed at the plant-product level, and prices (unit values) are observed 

at the same level, we can derive marginal costs at the plant-product level in each year. To avoid 

that extreme values drive our results, we only use observations within the percentiles 1 and 99 of 

the markup distribution.  The remaining markup observations vary between (approximately)   0.5 

25More precisely, the first order condition with respect to V  is  ∂L   =  PV − λ = 0, where the Lagrange 

multiplier λ equals the marginal cost of production. Manipulating this expression yields (9). 
26In principle, labor could be used as an alternative. However, in the case of Chile, labor being a flexible input 

would be a strong assumption due to its regulated labor market. A discussion of the evolution of job security and firing 

cost in Chile can be found in Montenegro and Pagés (2004). 
27By using each product’s reported variable cost shares to proxy for product-specific material costs, we avoid 

shortcomings of a prominent earlier approach: since product-specific cost shares were not available in their dataset, 

Foster et al. (2008) had to assume that plants allocate their inputs proportionately to the share of each product in total 

revenues. This is problematic because differential changes in markups across different products will affect revenue 

shares even if cost shares are unchanged. De Loecker et al. (2012) avoid this issue by using an elaborate estimation 

technique to identify product-specific material costs; this is not necessary in our setting due to the reported variable 

cost shares. 

Output Elasticity 

Markup 

= 
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and 4. In Table A.2 we show the average and median markup by sector. 

 
2.5 Marginal Cost vs TFPQ 

 
In the following, we briefly discuss the advantages and limitations of marginal cost as compared to 

quantity productivity (TFPQ) as a measure of efficiency in the context of our study. For now, sup- 

pose that the corresponding quantity-based input elasticities βs have been estimated correctly.28 

Then, in order to back out TFPQ by using (6), both output and inputs need to be transformed 

into physical quantities, using price indexes. A further complication arises if one aims to compute 

product-specific TFPQ for multi-product plants, where physical inputs need to be assigned to in- 

dividual products. While our dataset has the unique advantage that plants report the expenditure 

share of each product in variable costs (which is sufficient to derive the product-specific material 

expenditure share needed in (9) to compute markups), it does not contain information on how to 

assign input quantities to products. Thus, assigning mit, lit, and kit to individual products is prone 

to errors – or, in the case of capital, conceptually questionable. In light of these limitations, most 

studies compute TFPQ at the plant or firm level, thus not allowing for a product-specific analysis 

of export entry. An additional shortcoming of this more aggregate approach is that plant-level price 

indexes do not account for differences in product scope (Hottman, Redding, and Weinstein, 2014). 

Contrast this with the computation of markups in (9), still assuming that βs has been correctly 

estimated. The output elasticity is given by βs , and – for single-product plants – the expenditure 

share for material inputs is readily available in the data. For multi-product plants, we use the 

approximation with reported variable cost shares in equation (7). Thus, no elaborate procedures 

with price indexes is needed. Also, we only need to proportionately assign the expenditure share 

of material inputs to individual products, but not of capital and labor: while it is reasonable to 

assume that product-specific reported variable costs reflect materials (and also labor), this is more 

of a stretch for capital. 

We now turn to the estimation of βs, which is challenging and may introduce further error. 

When using a Cobb-Douglas production function, this issue is less severe for markups than for 

TFPQ. The computation of markups uses only βs   from the vector βs.     Note that measurement 

error of βs  will affect the estimated level of markups, but not our within-plant results: because we 

analyze log-changes at the plant-product level, ln(βs ) cancels out.  In other words, the  estimated 
 

28To compute TFPQ, the elasticities in the production function (3) must be estimated in quantities. Estimating this 

vector is challenging in itself: When estimating the production function (3), product-specific output and inputs have 

to be adjusted by proper price indexes. In addition, if input quantities are not available and input expenditure is used 

instead, the estimation of the production function coefficients is biased (see De Loecker et al., 2012). Although this 

bias may be corrected using proxies for input price variation, such proxies are typically unavailable and researchers 

need to rely on output price variation the as main driver of input prices. We discuss this in more detail in Appendix D. 
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log-changes in markups in (9) are only driven by the observed material expenditure shares, but not 

by the estimated output elasticity βs .29 Contrast this with the computation of TFPQ, which uses 

all coefficients in βs, multiplying each by the corresponding physical input in (6). In this case, 

analyzing log-changes in TFPQ will not eliminate errors and biases in the level of βs. 

Finally, since we study efficiency gains in the context of investment-exporting complementar- 

ity, it is also worthwhile to discuss how investment in new technology affects TFPQ and marginal 

cost. In particular, one may worry that while TFPQ explicitly accounts for the effect of fixed-cost 

investment in capital equipment, our estimation may (wrongly) identify declining marginal cost 

even if the technology itself does not change. We show that this is not the case if plants minimize 

costs, and under our assumptions from Section 2.2 that i) input prices do not change with export 

activity and ii) constant returns to scale. In the following discussion, we assume that the input 

elasticities βs have been correctly estimated for the quantity production function, so that changes 

in physical output can be readily computed using the quantity-equivalent of (3).  Suppose that   a 

plant raises its capital stock by △k (in log changes), adding the same type of machines, so that 

true efficiency is unchanged (△ω = 0). 

Because it is minimizing costs, the plant will maintain its expenditure shares for all other inputs 

(material m and labor l) proportional to the respective input elasticities. Under constant input 

prices, this implies that △k  =  △m  =  △l.  Thus, due to constant returns, total output   increases 

by △q = △k, and (6) correctly implies that TFPQ is unchanged. Next, we turn to marginal costs. 

Recall that we use materials as the variable input V .  Also, for the moment, hold output prices   

P fixed. The first term of (9) – the material input elasticity – is unchanged. In the second term, 

the quantity of the flexible input V  has increased by △m log points, and physical quantity Q has 

increased by △q log points. Because △q = △k =   △m, markups are unchanged for given output 

prices P . However, the latter may have changed during the plant’s investment-driven expansion. 

Suppose that output prices fell by △p log points (e.g., because the plant had to charge lower 

prices in order to sell its increased output volume).      Then (9) implies that the total effect of the 

investment-driven expansion is a decline in markup by △µ = △p log points. Log-changes in 

marginal cost can then be computed as △mc = △p − △µ = 0. Consequently, marginal costs 

correctly reflect that efficiency has not changed. Finally, the same calculation can be made for 

investment-driven expansions that raise efficiency by △ω > 0 (e.g., by adding new, more efficient 

machines).      Provided that the new technology uses all inputs in the same proportions as before 
 
 

29This is also the reason why we can use estimates of βs 
from the revenue production function, i.e., the same 

coefficients used to compute TFPR. Note that for the more flexible translog specification, βs     itself depends on the 

use of inputs and may thus vary over time. We show in Appendix D that our results are nevertheless robust to this 

specification. 
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(Hicks-neutrality – a standard assumption in the productivity literature), both TFPQ and marginal 

costs will drop by △ω. 

 
3 Data 

Our data are from a Chilean plant panel for the period 1996–2005, the Encuesta Nacional Indus- 

trial Anual (Annual National Industrial Survey – ENIA). Data for ENIA are collected annually  

by the Chilean National Institute of Statistics (INE), with direct participation of Chilean manu- 

facturing plants. ENIA covers the universe of manufacturing plants with 10 or more workers. It 

contains detailed information on plant characteristics, such as sales, spending on inputs and raw 

materials, employment, wages, investment, and export status. ENIA contains information for ap- 

proximately 4,900 manufacturing plants per year with positive sales and employment information. 

Out of these, about 20% are exporters, and 70% of exporters are multi-product plants. Within the 

latter (i.e., conditional on at least one product being exported), exported goods account for 79.6% 

of revenues. Therefore, the majority of production in internationally active multi-product plants is 

related to exported goods. Finally, approximately two third of the plants in ENIA are small (less 

than 50 workers), while medium-sized (50-150 workers) and large (more than 150 workers) plants 

represent 20 and 12 percent, respectively. 

In addition to aggregate plant data, ENIA provides rich information for every good produced 

by each plant, reporting the value of sales, its total variable cost of production, and the number  

of units produced and sold. Products are defined according to an ENIA-specific classification of 

products, the Clasificador Unico de Productos (CUP). This product category is comparable to the 

7-digit ISIC code.30 The CUP categories identify 2,169 different products in the sample. These 

products – in combination with each plant producing them – form our main unit of analysis. In the 

following, we briefly discuss how we deal with inconsistent product categories, units of output, 

and other issues of sample selection. 

3.1 Sample Selection and Data Consistency 

 
In order to ensure consistent plant-product categories in our panel, we follow three steps. First, 

we drop plant-product-year observations whenever there are signs of unreliable reporting. In par- 

ticular, we exclude plant-product-year observations that have zero values for total employment, 

demand for raw materials, sales, or product quantities. Second, whenever our analysis involves 

quantities of production, we have to carefully account for possible changes in the unit of mea- 

30For example, the wine industry (ISIC 3132) is disaggregated by CUP into 8 different categories, such as "Sparkling 

wine of fresh grapes", "Cider", "Chicha", and "Mosto". 
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surement. For example, wine producers change in some instances from "bottles" to "liters." Total 

revenue is generally unaffected by these changes, but the derived unit values (prices) have to be 

corrected. This procedure is needed for about 1% of all plant-product observations; it is explained 

in Appendix B. Third, a similar correction is needed because the product identifier in our sample 

changes in the year 2001. We use a correspondence provided by the Chilean Statistical Institute  

to match the new product categories to the old ones (see Appendix B for detail). After these 

adjustments, our sample consists of 109,210 plant-product-year observations. 

 

3.2 Definition of Export Entry 

 
The time of entry into export markets is crucial for our analysis. We observe the exporting history 

of each plant-product pair from 1996 to 2005. We impose three requirements for product j, pro- 

duced by plant i, to classify as an export entrant in year t: (i) product j is exported for the first time 

at t in our sample, which avoids that dynamic efficiency gains from previous export experience 

drive our results, (ii) product j is sold domestically for at least one period before entry into the 

export market, i.e., we exclude new products that are exported right away, and (iii) product j is the 

first product exported by plant i. The last requirement is only needed for multi-product plants. It 

rules out that spillovers from other, previously exported products affect our estimates. Under this 

definition we find 772 export entries (plant-products at the 7-digit level), and approximately 7% of 

active exporters are new entrants. 

 

3.3 Validity of the Sample 

 
Before turning to our empirical results, we check whether our data replicate some well-documented 

systematic differences between exporters and non-exporters. Following Bernard and Jensen (1999), 

we run the regression 

 

ln(yist)   =   αst + δ dexp 
+ γ  ln(List) + εist , (10) 

 

where yist denotes several characteristics of plant i in sector s and period t, dexp 
is an exporter 

dummy, List is total plant-level employment, and αst denotes sector-year fixed effects.31 The coef- 

ficient δ reports the exporter premium – the percentage-point difference of the dependent variable 

between exporters and non-exporters. Panel A in Table 1 reports unconditional exporter premia, 

while Panel B controls for plant-level employment. The results are similar for both specifications: 
 

31Whenever we use plant-level regressions, we control for sector-year effects at the 2-digit level. When using the 

more detailed plant-product data, we include a more restrictive set of 4-digit sector-year dummies. These correspond 

to approximately 200 product categories. 
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within their respective sectors, exporting plants are larger both in terms of employment and sales, 

are more productive (measured by revenue productivity), and pay higher wages. This is in line 

with the exporter characteristics documented by Bernard and Jensen (1999) for the United States, 

Bernard and Wagner (1997) for Germany, and De Loecker (2007) for Slovenia, among others. 

Using product-level data in column 5, we also find that markups are higher among exporters, con- 

firming the findings in De Loecker and Warzynski (2012). 

 

4 Efficiency Gains of Export  Entrants 

In this section we present our empirical results for new export entrants. We show the trajectories of 

revenue productivity, marginal costs, and markups within plant-products around the time of export 

entry. Our main finding is that TFPR does not change after export entry, while marginal costs 

drop substantially. Markups are also constant, indicating that efficiency gains are passed on to 

customers. We show that the same results hold when we focus on export entries that are predicted 

by tariff declines, and we provide suggestive evidence that the observed efficiency gains are driven 

by a complementarity between export entry and investment. 

4.1 New Export Entrants: Within Plant Trajectories 

 
To analyze trajectories of various plant-product characteristics, we estimate the following regres- 

sion for each plant i producing good j in period t: 
 

 
yijt = αst + αij + 
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k 
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+εijt , (11) 

 

where yijt refers to price, marginal cost, markup, or TFPR; αst are sector-year effects that capture 

trends at the 4-digit level, and αij are plant-product fixed effects (at the 7-digit level).32 We include 

two sets of plant-product-year specific dummy variables to capture the trajectory of each variable 

yijt before and after entry into export markets. First, T k reflects pre-entry trends in the two periods 

before exporting.  Second, the post-entry trajectory of the dependent variable is reflected by El   , 

which takes value one if product j is exported l periods after export entry.33
 

Figure 1 visualizes the results of estimating (11) for the sub-sample of export entrants.     The 
 

32For plant-level TFPR, the product index j in yijt is irrelevant in (11). Since plants are classified at the 4-digit SIC 

level, we include sector-year fixed effects at the 2-digit level (see footnote 31). 
33Due to our relatively short sample, we only report the results for l = 0, ..., 3 periods after export entry.  However, 

all regressions include dummies El    for all post-entry periods. 

+ 
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figure shows the point estimates for each outcome variable, together with the 90% confidence 

intervals. Time on the horizontal axis is normalized such that zero represents the entry period. The 

left panel of the figure shows the trajectories of TFPR at the plant- and plant-product level. Both 

are virtually unaffected by export entry, with tight confidence intervals around zero during the first 

two periods after entry (t = 0 and t = 1).34 This result is in line with the previous literature: there 

are no apparent efficiency gains when TFPR is used as a measure of efficiency. In t = 2 and t = 3, 

there is some weak evidence for increasing TFPR, which we discuss in more detail below. 

The right panel of Figure 1 shows a radically different pattern. After entry into the export mar- 

ket, marginal costs decline markedly. According to the point estimates, marginal costs are about 

11% lower at the moment of entry, as compared to pre-exporting periods. This difference widens 

over time: one period after entry it is 15%, and after 3 years, about 28%. These differences are not 

only economically but also statistically significant. Table 2 reports the corresponding coefficients. 

The trajectory for prices is very similar to marginal costs. This results because markups remain 

essentially unchanged after export entry – only two years after entry, there is a slight increase in 

markups by about 5%. The pattern in markups coincides with the one in TFPR, in line with our 

theoretical results in Section 2. This confirms that revenue productivity reflects efficiency gains 

only if markups rise, i.e., if not all gains are passed on to customers. Physical quantities sold 

increase by approximately 11-18% after export entry. 

 

Reported Average Costs 

One potential concern for our marginal cost results is that they rely on the correct estimation of 

markups. If we underestimate the true changes in markups after export entry, then the computed 

marginal cost would follow prices too closely.35 We can address this concern by using a unique 

feature in our dataset to compute an alternative cost measure. Plants covered by ENIA report the 

total production cost per product, as well as the number of units produced. The questionnaire 

defines total cost per product as the product-specific sum of raw material costs and direct labor 

involved in production. It explicitly asks to exclude transportation and distribution costs, as well 

as potential fixed costs, and is thus a reasonable proxy for average variable costs. Figure 2 plots our 

computed marginal costs against the reported average costs (both in logs), controlling for plant- 

product fixed effects, as well as 4-digit sector-year fixed effects (i.e., reflecting the within plant- 

product variation that we exploit empirically).      The two measures are very strongly correlated. 

 

34The fact that TFPR for the exported product shows a very similar trend as its plant-level counterpart is not surpris- 

ing, given that the exported product typically accounts for the majority of output in exporting multi-product plants. 
35For example, suppose that prices actually fall because markups shrink upon export entry, but that noisy data cloud 

these changes when applying the methodology in section 2. Then we would wrongly attribute the observed decline in 

prices after export entry to a decline in marginal cost. 
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This lends strong support to the markup-based methodology for backing out marginal costs by De 

Loecker et al. (2012). Next, we use average cost as a measure of efficiency and repeat the above 

estimations. 

The last row of Table 2 shows that average costs decrease after export entry, closely following 

the trajectory that we identified for marginal cost. Export entry is followed by a decline in average 

costs of 11% in the period of entry, growing to 14% after one year, and to 26% three periods after 

entry. These results confirm that the documented efficiency gains after export entry are not an 

artefact of the estimation procedure for marginal costs. 

4.2 Matching Results 

Our within-plant trajectories in Table 2 showed a slight (statistically insignificant) decline in price 

and marginal cost of new exported products before entry occurs (in t = −1). This raises the 

concern of pre-entry trends, which would affect the interpretation of our results. For example, 

price and marginal cost could have declined even in the absence of exporting, or export entry 

could be the result of selection based on pre-existing productivity trajectories. In the following 

we address this issue by comparing newly exported products with those that had a-priori a similar 

likelihood of being exported, but that continued to be sold domestically only (De Loecker, 2007). 

This empirical approach uses propensity score matching (PSM) in the spirit of Rosenbaum and 

Rubin (1983), and further developed by Heckman, Ichimura, and Todd (1997). Once a control 

group has been identified, the average effect of treatment on the treated plant-products (ATT) can 

be obtained by computing the average differences in outcomes between the two groups. 

All our results are derived using the nearest neighbor matching technique. Accordingly, treat- 

ment is defined as export entry of a plant-product (at the 7-digit level), and the control group con- 

sists of the plant-products with the closest propensity score to each treated observation. We obtain 

the control group from the pool of plants that produce similar products as new exporters (within 

4-digit categories), but for the domestic market only. To estimate the propensity score, we use a 

flexible specification that is a function of plant and product characteristics, including the level and 

trends in product-specific costs before export entry, lagged product-level TFPR, the lagged capital 

stock of the plant, and a vector of other controls in the pre-entry period, including product sales, 

number of employees (plant level), and import status of the plant.36 Appendix C provides further 

detail. Once we have determined the control group, we use the difference-in-difference (DID) 

methodology to examine the impact of export entry on product-level TFPR, marginal cost, and 

markups.  As Blundell and Dias (2009) suggest, using DID can improve the quality of   matching 

36Following Abadie, Drukker, Herr, and Imbens (2004), we use the 5 nearest neighbors in our baseline specification. 

The difference in means of treated vs. controls are statistically insignificant for all matching variables in t = −1. 
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results because initial differences between treated and control units are removed. 

Table 3 shows the matching estimation results. Since all variables are expressed in logarithms, 

the DID estimator reflects the difference in growth between newly exported products and their 

matched controls, relative to the pre-entry period (t = −1).37 These results confirm the within- 

plant pattern documented above: changes in TFPR after export entry are initially small and statisti- 

cally insignificant; the same is true for markups. After three periods, TFPR increases slightly, and 

this goes hand-in-hand with higher markups – both increase by about 8 percentage points more 

than their counterparts for the matched control products. This suggests that, eventually, efficiency 

gains are partially reflected in TFPR. Marginal costs, on the other hand, decrease after entry into 

export markets. When compared to the previously reported within-plant trajectories, the PSM re- 

sults show somewhat smaller initial differences that grow over time: the difference in marginal 

cost relative to the control group grows from 0.4% in the period of export entry to 16% in the year 

after entry, and to 24% three periods after entry. 

 
4.3 Robustness and Additional Results 

 
In this subsection we check the robustness of our results to alternative specifications and sample 

selection. 

Balanced Sample of Entrants 

To what extent does unsuccessful export entry drive our results? To answer this question, we 

construct a balanced sample of exporters, including only plant-products that are exported in each 

of the first 3 years after export entry. Table 4 shows the results for propensity score matching. 

The main pattern is unchanged. TFPR results are quantitatively small and mostly insignificant, 

while marginal costs drop markedly after export entry – by approximately 18-30 percentage points 

more than for comparable plant-products that did not enter the export market. The main difference 

with Table 3 is that marginal costs are now substantially lower already at the time of export entry 

(t = 0). This makes sense, given that we only focus on ex-post successful export entrants, who 

will tend to experience larger efficiency gains. In addition, in our baseline matching results, effects 

tended to increase over time. This may have been driven by less productive products exiting the 

export market, so that the remaining ones showed larger average differences relative to the control 

group. In line with this interpretation, the drop in marginal costs is more stable over time in the 

balanced sample. In sum, the results from the balanced sample confirm our full sample estimates 

and suggest relatively stable efficiency gains over time. 
 

37For example, a value of 0.1 in period t = 2 means that two years after export entry, the variable in question has 

grown by 10 percentage points more for export entrants, as compared to the non-exporting control group. 
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Further Robustness Checks 

We perform several additional robustness checks in the appendix, and briefly summarize these 

here. In our baseline matching estimation, we used the 5 nearest neighbors.  Table A.3 shows  

that using either 3 or 10 neighbors instead does not change our results. Next, in order to estimate 

product-level TFPR, marginal costs, and markups, we had to assign inputs to individual products 

in multi-product plants, using reported variable cost shares as in equation (7). This is not needed 

in single-product plants, where all inputs enter in the production of one final good. Table A.4 uses 

only the subset of single-product plants. This robustness check comes at a cost: export entries by 

single-product plants represent only about one-fourth of the total number of entries in our sample. 

Correspondingly, the results are noisier than before. Nevertheless, the magnitude of coefficients 

confirms our main finding: while changes in TFPR are minuscule, marginal costs fall substantially 

after export entry. Finally, we investigate whether the non-result for TFPR could be an artefact  

of us using a Cobb-Douglas specification in the productivity estimation in Section 2.3.  In   Table 

A.5 we estimate the more flexible translog production function, which allows for a rich set of 

interactions between the different inputs. We confirm our main results: there is no significant 

change in TFPR after export entry. We also use the translog specification to compute markups and 

marginal costs. This has to be interpreted with caution: because the translog production function 

is estimated based on revenues and allows for varying input shares over time, it gives rise to a 

potential price bias in the coefficient estimates (see Appendix D for detail). In contrast to the 

Cobb-Douglas specification, this bias is not constant over time and thus not absorbed by fixed 

effects in within-plant/product analyses. Nevertheless, the bias is probably of minor importance: 

as shown in Table A.6, we obtain very similar results for markups and marginal costs as in the 

baseline specification. In the same table, we also show that our results are very similar when 

estimating a quantity production function for the Cobb-Douglas case. Appendix D discusses the 

additional robustness checks in greater detail. 

 
 
4.4 Export Entry Predicted by Tariff Changes 

 
In the following, we attempt to isolate the variation in export entry that is driven by trade liberal- 

ization. This strategy helps to address endogeneity concerns, for example, that unobservables may 

drive both export entry and improvements in efficiency. We follow a rich literature in international 

trade, using tariff changes to predict export entry. Before presenting the results, we discuss the 

limitations of this analysis in the context of our Chilean data. 
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Limitations of the 2SLS approach 

First, export tariff declines during our sample period are limited because Chile did not undergo 

major trade liberalization. On average across all destinations, export tariffs for manufacturing 

products fell from 10.2% in 1996 to 5.6% in 2005 (weighted by volume, with the European Union 

and the U.S. being the most important destinations, accounting for 28% and 19% of all exports, 

respectively). The average decline in tariffs is relatively small when compared to periods of trade 

liberalization in other countries. For example, average export tariffs for Slovenian manufacturing 

to the EU fell by 5.7% over a single year in 1996-97. Nevertheless, there is some meaningful 

variation across sectors in Chilean manufacturing that we can exploit, as illustrated in Figure 3 for 

2-digit industries. For example, ‘clothes and footwear’ saw a decline by approximately 7 percent- 

age points, while export tariffs for ‘metallic products’ fell by as little as 1 p.p. In addition, there  

is variation in the timing of tariff declines across sectors, and the plotted average tariff changes   

at the 2-digit level in Figure 3 hide underlying variation for more detailed industries. We exploit 

this variation in the following, using 4-digit ISIC tariff data (the most detailed level that can be 

matched to our panel dataset).38
 

This leads to the second limitation of our analysis: as in Bustos (2011), we use industry level 

tariffs, so that the identifying variation is due to changing export behavior on average for plant- 

products within the corresponding 4-digit tariff categories. The third limitation follows from the 

staggered pattern of (small) tariff declines over time – as opposed to a short period of rapid trade 

liberalization. In order to obtain sufficiently strong first stage results, we have to exploit the full 

variation in tariffs over time. In particular, in most specifications, including year effects – or 2- 

digit sector-year effects – leaves us with a weak first stage. Consequently, our main specifications 

do not include such fixed effects, so that the full variation in tariffs – across sectors and over  

time – is exploited. This leads to the possibility that other factors that change over time may  

drive our results. To alleviate this concern, we control for total plant or plant-product sales in all 

regressions. Thus, our results are unlikely to be driven by sales expansions over time that happen 

to coincide with trends in tariffs. We perform a number of checks to underline this argument. 

Nevertheless, in light of the limitations imposed by the data, our 2SLS results should be interpreted 

as an exploratory analysis. 
 

38Chilean tariffs are available at the HS-6 level, but a correspondence to the 7-digit ENIA product code does not 

exist. The most detailed correspondence that is available matches tariff data to 4-digit ISIC – an industry code that is 

provided for each ENIA plant. When aggregating export tariffs to the 4-digit level, we use total Chilean exports within 

each detailed category as weights.  For multi-product plants, ENIA assigns the 4-digit ISIC code that corresponds    

to the plant’s principal product. This does not impose an important constraint on our analysis: for the vast majority 

(96%) of export-entrant multi-product plants in our sample, the principal product (highest revenue) is also the one that 

is exported. Consequently, our main analysis continues to examine export entry at the plant-product level. To check 

for robustness, we also provide results at the plant level. 
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Empirical setup 

We continue to exploit within-plant-product variation, using plant-product fixed effects. In the first 

stage, we predict export entry based on export tariffs: 

 
Eijt  = αij  + β1τst + γ1 ln(salesijt) + εijt  , (12) 

 
where Eijt is a dummy that takes on value one if plant i exports product j in year t, salesijt are total 

(domestic and exported) sales, and τst are export tariffs in sector s (to which product j belongs) in 

year t. Correspondingly, all standard errors are clustered at the 4-digit sector level s. Because we 

use plant-product fixed effects αij , neither established (continuing) exporters nor plant-products 

that are never exported affect our results. We thus restrict the sample to export entrants as defined 

in Section 3.2. Note that our analysis is run in levels rather than changes. This allows for tariff 

declines in different years to affect export behavior – as we discussed above, Chile did not undergo 

a major trade liberalization over our sample period, so that we cannot explore before-after variation 

over a short time window as in Bustos (2011). In addition, running the analysis in levels with 

fixed effects (rather than, say, annual changes) allows for flexibility in the timing with which tariff 

declines affect exporting. For example, if the reaction to lower tariffs gains momentum over time 

(as in the Canadian case documented by Lileeva and Trefler, 2010), annual changes would not 

properly exploit this variation. Finally, we use OLS to estimate (12); probit estimates would be 

inconsistent due to the presence of fixed effects. 

Column 1 in Table 5 presents our first-stage results for export entrants – in Panel A at the 

product level, and in Panel B, at the plant level. For the latter, we can drop the subscript i in (12), 

and the export dummy Eit takes on value one in periods t when plant i has entered the export 

market. Our results imply that declining export tariffs have a strong effect on export entry within 

4-digit sectors, and the corresponding first stage F-statistics are well above the critical threshold 

of 16.4. Next, we proceed with the second stage, where we regress several characteristics yit that 

include marginal costs, markups, and TFPR on predicted export entry Êijt: 

 

ln(yijt) = αij  + β2  Êijt + γ2 ln(salesijt) + ϑijt  . (13) 

 
Columns 2-4 in panel A of Table 5 report the second-stage results at the plant-product level. 

Marginal costs drop by approximately 20% upon tariff-induced export entry, and this effect is sta- 

tistically highly significant (we report weak-IV robust Anderson-Rubin p-values in square brack- 

ets, based on Andrews and Stock, 2005). On the other hand, neither markups nor marginal costs 

change upon (predicted) export entry,  confirming our results for within-plant trajectories.      The 
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plant-level results in panel B show a very similar pattern. In the appendix, we present a number 

of additional checks. Table A.7 shows that the reduced-form results of regressing export entry 

directly on tariffs show the same pattern as the 2-SLS estimates. We also show that there is no 

relationship between export tariffs and domestic sales (Table A.8). This makes it unlikely that our 

results are driven mechanically by falling tariffs that coincide with expanding sales over time. In 

sum, despite the limited variation in tariffs, there is compelling evidence for within-plant efficiency 

gains after tariff-induced export entry, and for our argument that these gains are not captured by 

revenue productivity. 

4.5 Interpretation of Export Entry Results and Possible Channels 

 
In the following, we discuss possible channels that may drive the observed trajectories of prices 

and marginal costs for export entrants. We differentiate between demand- and supply-side expla- 

nations. Among the latter, export entry can be driven by selection on pre-exporting efficiency (as 

in Melitz, 2003), or by a complementarity between exporting and investment in new technology 

(c.f. Constantini and Melitz, 2007; Atkeson and Burstein, 2010; Lileeva and Trefler, 2010; Bustos, 

2011). In addition, anticipated learning-by-exporting will also raise the odds of export entry. We 

discuss the extent to which each of these explanations is compatible with the patterns in the data. 

Demand-driven export entry 

If demand shocks – rather than changes in production – were responsible for our results, we should 

see no change in the product-specific marginal costs, while sales would increase and markups 

would tend to rise. This is not in line with our empirical observation of falling marginal costs and 

constant markups. Thus, demand shocks are an unlikely driver of the observed pattern. 

Selection on pre-exporting productivity 

Firms that are already more productive to start with may enter international markets because of 

their competitive edge. Consequently, causality could run from initial productivity to export entry, 

reflecting self-selection. In this case, the data should show efficiency advantages already before 

export entry occurs. Since we analyze within-plant-product trajectories, such pre-exporting effi- 

ciency advantages should either be captured by plant-product fixed effects, or they would show up 

as declining marginal costs before export entry. This is not the case in our within- plant/product 

data (see Figure 1), where marginal costs only drop in the year of export entry (see Table 2). In 

addition, our matching estimation is designed to absorb pre-entry productivity differences,39 and 

our 2SLS results for tariff-induced export entry are unlikely to be affected by selection. Of course, 

39Note that the drop in marginal costs in the period of export entry (t = 0) from Table 2 becomes small and 

insignificant in the matching results in Table 3. 
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the sample of export entrants itself could be selected – with more productive plants being more 

likely to eventually become exporters as in Melitz (2003). However, this does not affect our re- 

sults, which are based exclusively on within-plant/product variation. In sum, selection based on 

pre-exporting productivity differences is unlikely to drive the observed within-plant-product tra- 

jectories. 

Learning-by-exporting 

Learning-by-exporting (LBE) refers to exporters gaining expertise due to their activity in interna- 

tional markets. LBE is typically characterized as an ongoing process, rather than a one-time event 

after export entry. Empirically, this would result in continuing efficiency growth after export entry. 

There is some limited evidence for this effect in our data: Table 2 shows a downward trend in 

marginal costs during the first three years after export entry. However, the trend is less pronounced 

in the matching results in Tables 3 and 4. Thus, learning-by-exporting can at best explain parts of 

our results. 

Complementarity between Technology and Exporting 

Finally, we analyze the case where exporting goes hand-in-hand with investment in new technol- 

ogy. As pointed out by Lileeva and Trefler (2010), expanded production due to export entry may 

render investments in new technology profitable. In this case, a plant will enter the foreign market 

if the additional profits (due to both a larger market and lower cost of production) outweigh the 

combined fixed costs of export entry and new technology. This setup implies that initially less 

productive plants will require larger efficiency gains. Intuitively, productive plants are already 

close to the efficiency threshold required to compete in international markets, while unproduc- 

tive plants need to see major efficiency increases to render exporting profitable. Thus, we should 

expect "negative selection" based on initial productivity – plants that are initially less productive 

should experience larger changes in efficiency. This prediction can be tested in the data (Lileeva 

and Trefler, 2010). 

Table 6 provides evidence for this effect, reporting the change in marginal costs for plant- 

products with low and high pre-exporting productivity.40 We find a substantially steeper decline 

for initially less productive plant-products. This result is in line with a complementarity channel 

where exporting and investment in technology go hand-in-hand, and where initially less productive 

plants will only make this joint decision if the efficiency gains are substantial. 
 

40Because marginal costs cannot be compared across plant-products, we use pre-exporting TFPR to split plants into 

above- and below median productivity. Also, pre-exporting TFPR can only be computed when the export entry date is 

known with certainty. Thus, we cannot apply our 2SLS methodology where tariff changes predict the expected timing 

of export entry. Consequently, we use propensity score matching, applied to the subsamples of plant-products with 

high and low pre-exporting TFPR. 
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The complementarity channel is also supported by detailed data on plant investment. ENIA re- 

ports annual plant-level investment in several categories. We analyze the corresponding trends for 

export entrants in Panel A of Table 7. Overall investment shows an upward trend right before and 

shortly after export entry. Disentangling this aggregate trend reveals that it is driven by investment 

in machinery, but not in vehicles or structures. The evidence is thus in line with a complementar- 

ity between investment in new productive technology and export entry. The fact that investment 

spikes already before export entry does not conflict with this interpretation – it typically takes some 

time until newly purchased machinery and equipment is installed and fully integrated into the pro- 

duction process. In addition, the time lag suggests that (on average) export entry is planned and 

prepared ahead of time, while the cost trajectories documented above imply that efficiency gains 

coincide with export entry. Overall, our findings suggests a pattern where plant managers first 

decide to export and perform the necessary investments, and then begin to sell to foreign markets 

when technology has been updated. 

 

Alternative Interpretations: Returns to Scale, Input Prices, and Product Quality 

Economies of scale could potentially also explain declining marginal costs after export entry: if 

exporting goes hand-in-hand with a general expansion of production, this could raise efficiency 

even without targeted investment in better technology, or it could lower input prices due to volume 

discounts. However, our production function estimates suggest approximately constant returns to 

scale in most sectors – the mean sum of all input shares is 1.018 with a standard deviation of 0.047. 

Table A.1 in the appendix reports further details, showing output elasticities and returns to scale 

for each 2-digit sector in our sample. Table A.1 also shows that returns to scale are very similar 

when we instead estimate a more flexible translog specification.41
 

Could marginal costs fall after export entry simply because exporters purchase inputs at dis- 

counted prices? Panel B in Table 7 examines this possibility, reporting trends of the average price 

of all inputs, as well as for a stable basket of inputs (i.e., those that are continuously used for at 

least two periods before and after export entry). The table shows that input prices do not decrease 

after export entry; if anything, inputs become somewhat more expensive, although this trend is 

statistically weak. 

Finally, it is unlikely that quality upgrading of exporters is responsible for our results, since 

higher product quality is associated with higher output prices and production costs (c.f. Kugler 

 

41The translog case allows for interactions between inputs, so that output elasticities depend on the use of inputs. 

Consequently, if input use changes after export entry, this could affect elasticities and thus returns to scale. To address 

this possibility, we compute the average elasticities for 2-digit sectors using i) all plants, and ii) using only export 

entrants in the first 4 periods after entry. Both imply very similar – approximately constant – returns to scale, as shown 
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and Verhoogen, 2012; Manova and Zhang, 2012; Atkin et al., 2014). This is not compatible with 

the observed decline in output prices, marginal costs, and the relatively stable input prices in our 

data. In addition, the results from a structural model by Hottman et al. (2014) suggest that quality 

differences are predominantly associated with TFPR differences, rather than differential costs. 

On balance, our findings point to exporting-technology complementarity as an important driver 

of efficiency gains among export entrants. In addition, there is some suggestive evidence for 

learning-by-exporting in the years after entry. Importantly, the contribution of our findings is 

independent of which exact channels drive the results: we show that there are substantial efficiency 

gains associated with entering the export market, and that the standard TFPR measure does not 

capture these gains because of relatively stable markups during the first years after entry. 

 

4.6 Stable Markups after Export Entry – A Result of ‘Foreign Demand Building’? 

 
We observe that, on average, prices of plant-products fall hand-in-hand with marginal costs after 

export entry. Understanding why prices fall is important for the interpretation of our results; if 

they did not change, TFPR would reflect all efficiency gains, eliminating the need for alternative 

measures. We observed that export entrants charge relatively constant markups, so that efficiency 

gains are passed through to customers. One explanation is that new exporters engage in ‘demand 

building’, as described by Foster et al. (2012) – charging lower prices abroad in an attempt to 

attract customers where ‘demand capital’ is still low. If this is the case, we should expect a stronger 

decline in export prices as compared to their domestic counterparts, because export entrants are 

already established domestically, but still unknown to international customers. In the following, 

we provide supportive evidence for this assertion. 

We can disentangle domestic and foreign prices of the same product in a subsample for 1996– 

2000. For this period, the ENIA questionnaire asked about separate quantities and revenues for 

domestic and international sales of each product. Thus, prices (unit values) can be computed 

separately for exports and domestic sales of a given product. Within this subsample, we identify 

‘young’ export entrants as plant-products that have been exported for a maximum of 3 years and 

compare their average domestic and foreign prices before and after export entry. We find that 

within plant-products of ‘young’ exporters, the price of exported goods is about 22% lower than 

pre-export entry, while the price of the same good sold domestically falls by 8%.42 Assuming that 

the marginal cost of production is the same for both markets, the results provide some evidence 

that efficiency gains are passed on to both domestic and foreign customers – but significantly more 
 

42To obtain these estimates, we separately regress logged domestic and export prices (at the 7-digit plant-product 

level) on an exporter dummy, controlling for plant-product fixed effects and 4-digit sector-year effects.  Table A.9 in 



show that results are very similar for single-product plants, where this computation is not needed. 
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so to the latter. While we cannot pin down the exact mechanism that explains the observed price 

setting, our observations are in line with ‘demand building’ in foreign markets. 

 

5 Export Expansions of Existing  Exporters 

We have shown that marginal costs drop substantially after export entry, while markups and TFPR 

remain roughly unchanged. We have interpreted this as suggestive evidence for substantial effi- 

ciency gains within plants that are not captured by standard productivity measures. Does the same 

pattern hold for existing exporters – that is, do increases in export volume have the same effect as 

export entry itself? In the following, we examine this question. We differentiate between ‘station- 

ary’ periods with relatively constant export tariffs, and periods of trade liberalization when export 

tariffs fell. Most of our sample period is characterized by the former – as discussed above, Chile 

did not undergo major trade liberalization between 1996 and 2005. Nevertheless, there is variation 

in tariff changes across 4-digit sectors, which we exploit. Thus, the same limitations as described 

in Section 4.4 apply to the following analysis. 

5.1    Export Volume and Efficiency within Plants: OLS Results 

 
We begin by examining the relationship between export volume and plant performance in simple 

OLS regressions. A caveat is that export sales – a crucial variable in this analysis – are reported at 

the plant- but not at the product-level. Thus, we run the following analysis at the plant (i) level: 

 
ln(yit) = β  ln(exportit) + γ  ln(salesit) + δi + εit  , (14) 

 
where yit denotes our standard outcome variables: marginal costs, markups, and TFPR.43 The 

variable exportit reflects total plant-level export revenue, and salesit denotes total plant-level sales; 

δi are plant fixed effects, so that all our results reflect within-plant variation. Controlling for salesit 

ensures that our results are not driven by plant size and are instead attributable to expansions of 

exports relative to overall sales. 

For each specification, we report results for different subsamples of plants, according to their 
 

43For multi-product plants, TFPR can be calculated with the standard procedure, but aggregating markups and 

marginal costs to the plant level is less straightforward. We employ the following method, which is explained in more 

detail in Appendix B.2. First, because our analysis includes plant fixed effects, we can normalize plant-level marginal 

costs and markups to unity in the last year of our sample, 2005 (or the last year in which the plant is observed). We then 

compute the annual percentage change in marginal cost at the plant-product level. Finally, we compute the average 

plant-level change, using product revenue shares as weights, and extrapolate the normalized plant-level marginal costs. 

For markups, we use the same product revenue shares to compute a weighted average plant-level markup.  We    also 
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overall export share. We begin with the full sample that includes all continuing exporters (i.e., all 

those with initial export shares above zero) and then move to plants with at least 10%, 20%,...,50% 

export share. This reflects the following tradeoff: On the one hand, plants that export a larger 

fraction of their output will react more elastically to changes in trade costs than plants that export 

little. Thus, estimated effects will tend to increase as we raise the export share cutoff. On the 

other hand, for plants that already have a high export share it is more difficult to increase exports 

relative to sales.44 This will attenuate the effect of falling tariffs. In combination, the two opposing 

forces should lead first to stronger and then to weaker effects as we increase the export share cutoff. 

Indeed, we find that results are typically strongest for plants with 20-40% export shares. 

We present our OLS results of estimating (14) in Table 8. There is only weak evidence that 

increasing export volume is associated with higher efficiency or markups. The OLS coefficients 

(elasticities) indicate that a doubling of exports within a plant is associated with marginal costs 

declining by about 4% on average, and markup and TFPR increases of a similar magnitude. The 

weak OLS results are not surprising. The stationary trade environment of our sample period lacks 

– on average – systematic incentives for existing exporters to invest in new technology. Thus, 

OLS results probably reflect mainly short-term responses of exports to temporary price or demand 

shocks, which are not sufficient to incentivize investment in new technology.45
 

Conversely, this argument implies that permanent shocks to trade costs (e.g., in the form of 

lower tariffs) can lead to technology upgrading (see Bustos, 2011, for empirical evidence on this 

mechanism). One way to illustrate this point in our data is by restricting the OLS regressions to a 

subsample that examines export expansions (plants with non-declining exports) during years where 

most sectors saw falling tariffs (2003-05; see Figure 3). Indeed, we find that in this subsample, 

there is a more pronounced association between export volumes and efficiency. As shown in Table 

A.11 in the appendix, marginal costs drop by 25-35%, while TFPR and markups increase by up to 

10%. In the following, we exploit tariff changes more systematically, by using 2SLS estimation. 

5.2    Tariff Changes and Within-Plant Efficiency Gains: 2SLS Results 

 
We now focus on export expansions that are driven by trade liberalization. As in Section 4.4, we 

use 4-digit industry tariffs to instrument for plant exports, and we include plant fixed effects. Table 

9 presents our 2SLS results. The first stage coefficients in panel A show that tariffs are a strong 

predictor of export expansions – in particular in the subsamples that include plants with at least 20- 

44In the extreme, for plants that export 100% of their output, export expansions are identical to sales expansions 

and are thus fully absorbed by including sales as a control. 
45It is unlikely that the weak relationship between export volume and plant performance is due to the plant- (rather 

than product-) level data. Table A.10 in the appendix shows that results are similarly weak for single-product plants 

(while Table A.4 shows strong results for single-product export entrants). 
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40% export share (cols 3-5), where the first stage F-statistic significantly exceeds the critical value 

for a maximal 10% IV bias (16.4). Panel A also reports the predicted average log-point increase in 

exports due to export tariff reductions over our entire sample period (we use △ to denote predicted 

changes). According to these estimates, trade liberalization (export tariffs falling by 4.6 p.p. on 

average) raised exports by up to 10 percent relative to total sales (which are controlled for in the 

regressions) in 1996-2005. The second-stage results show that tariff-induced export expansions 

lead to sizeable reductions in marginal costs (panel B). To interpret the magnitude of effects, we 

compute the change in marginal costs due to the overall tariff reduction over the sample   period. 

For example, in col 3, this effect is obtained by multiplying the predicted increase △� in exports 

from panel A (0.096) with the coefficient estimate from panel B (-1.113). We find that export tariff 

declines in 1996-2005 reduced marginal costs by approximately 10%. This is smaller than the 

decline in marginal cost associated with export entry (20-30% as reported in Table 5). If taken at 

face value, our results thus suggest that export entry has (on average) a stronger effect on efficiency 

than a moderate (10%) increase in export volume for existing exporters. 

Next, we turn to the results for markups and TFPR (panel C and D in Table 9, respectively). 

Both variables increase statistically significantly for firms that export between 10 and 30% of 

their output. Nevertheless, TFPR reflects only about one half of the efficiency gains reflected by 

marginal costs: tariff declines over our sample period raised TFPR by 4-5%. The increase in 

markups is very similar, in line with our result in Section 2 that changes in markups will reflect 

changes in TFPR. Our results also imply that about half of the efficiency gains reflected by lower 

marginal costs are passed on to customers in the form of lower prices.46
 

In the appendix we present a number of consistency checks. Table A.12 shows the reduced- 

form results corresponding to Table 9. We confirm the 2SLS results: lower tariffs lead to signif- 

icant declines in marginal costs, and to significant (but relatively smaller) increases in markups 

and marginal costs. Next, Table A.13 shows that while there is a strong effect of tariff declines on 

exports (relative to total sales), there is no clear effect on domestic sales – in fact, tariff declines 

are associated with somewhat lower domestic sales relative to total sales. This suggests that by 

controlling for total sales in all regressions, we identify a pattern that is specific to trade, and not 

driven by a general expansion of production. In Table A.14 we show 2SLS results when including 

2-digit sector-year fixed effects. As discussed above, these soak up most of the identifying vari- 

ation in tariffs in the first stage, leading to low F-statistics and thus potentially unreliable 2SLS 

results. Nevertheless, the second-stage results for exporters with export shares above 20 and 30% 

are similar in magnitude to our main results, and statistically significant (based on weak-IV robust 
 

46This is implicit in Table 9, where markups increase by less than the drop in marginal costs. Statistical tests (not 

reported) show that the decline in prices is also statistically significant for cols 2-4. 
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p-values). In Table A.15 we show that input prices are largely unchanged following tariff-induced 

export expansions. Finally, Table A.16 shows that tariff-induced export expansions are also asso- 

ciated with increases in capital stock. This is compatible with our interpretation that investment in 

new technology is responsible for the observed efficiency increases. 

The fact that some of the increased efficiency is now captured by TFPR marks an important 

difference to the results on export entry, where markups and TFPR remained unchanged. The core 

of the difference is related to pricing behavior: while new export entrants pass on most efficiency 

gains to their international customers, established exporters raise markups. Related to our discus- 

sion in Section 4.6, existing exporters may face relatively less elastic demand because they already 

have an established customer base. This may explain why efficiency increases translate – at least 

partially – into higher markups for established exporters. This interpretation is also in line with 

models such as Melitz and Ottaviano (2008), where lower tariffs have an effect akin to a demand 

shock for existing exporters, inducing them to raise markups. 

 

6 Discussion  and Conclusion 

Over the last two decades, a substantial literature has argued that exporting induces within-plant ef- 

ficiency gains. This argument has been made by theoretical contributions in the spirit of Grossman 

and Helpman (1991) and is supported by a plethora of case studies in the management literature. 

The finding that exporting induces investment in new technology also suggests that within-plant 

efficiency gains must exist (Bustos, 2011). A large number of papers has sought to pin down these 

effects empirically, using firm- and plant-level data from various countries in the developed and 

developing world. With less than a handful of exceptions, the overwhelming number of studies has 

failed to identify such gains. We pointed out a reason for this discrepancy, and applied a recently 

developed empirical methodology to resolve it. Previous studies have typically used revenue- 

based productivity measures, which are downward biased if higher efficiency is associated with 

lower prices. Using a detailed Chilean plant-product level panel over the period 1996-2005, we 

showed that this bias is likely at work. 

In order to avoid the effect of lower prices on the efficiency measure, we used marginal costs, 

which is directly (negatively) associated with quantity-productivity in standard production func- 

tions. We estimated marginal costs at the plant-product level following the approach by De Loecker 

et al. (2012). When using this measure to analyze export-related efficiency gains, we have distin- 

guished between new export entrants and expanding foreign sales by established exporters. In 

addition, within the latter category, we have differentiated ‘stationary periods’ (i.e., with relatively 

stable tariffs) from periods of trade liberalization. For these cases, we have analyzed the relation- 



32  

ship between exporting and efficiency – measured by marginal costs. We find that export entry 

and tariff-related expansions are both associated with increasing efficiency. However, this is not 

true for increases in export volume during ‘stationary periods’. This suggests that efficiency gains 

occur when plants anticipate permanent changes in their production behavior – due to first-time 

export entry or durable tariff declines. Our data suggest that in these cases, firms invest in technol- 

ogy to improve efficiency. On the other hand, the ups and downs in export volume of established 

exporters during ‘stationary’ periods likely reflect transitory demand shocks that do not lead to 

technology upgrading. 

We also compared the results when using marginal costs as efficiency measure to those based 

on the typically used TFPR. Our results suggest that actual tariff-induced efficiency gains are larger 

than those reflected by TFPR. For export entrants, TFPR fails to identify any gains, and for tariff- 

induced export expansions TFPR gains are only half the size as compared to those captured by 

marginal costs. These differences arise from the behavior of markups: on average, export entrants 

pass on almost all efficiency gains to customers – markups are unchanged, and therefore TFPR  

is unchanged. Established exporters, on the other hand, translate part of the efficiency gains into 

higher markups. These observation are compatible with ‘demand building’ (Foster et al., 2012): 

new exporters may charge low prices initially in order to attract customers, while established ex- 

porters can rely on their existing customer network, so that lowering prices is less vital. 

Next, we gauge the magnitude of the observed within-plant efficiency gains after export entry, 

comparing the alternative productivity measures. We begin with TFPR. For export entrants, we 

found no increase in TFPR; and for tariff-induced export expansions of established exporters, the 

gains over the full sample period are below 5% (Table 9). Thus, if we had used the common 

revenue-based productivity measure, we would have confirmed the predominant finding in the 

previous literature – little evidence for within-plant efficiency gains. However, our results imply 

that TFPR is an inferior measure for export-related efficiency gains. It fails to identify gains 

associated with export entry, and it underestimates gains related to export expansions of existing 

exporters. Based on marginal costs, new export entry is accompanied by efficiency increases of 

15-25%. In addition, tariff-induced export expansions led to approximately 10% higher efficiency 

over our sample period (Table 9) – double the magnitude reflected by TFPR. Compare this to 

Lileeva and Trefler (2010), who found that labor productivity rose by 15% for Canadian exporters 

during a major trade liberalization with the US in 1984-96. Since labor productivity is subject to 

the same (output) price bias as TFPR, the actual efficiency gains may well have been larger – if 

Canadian exporters, similar to their Chilean counterparts, passed on some of the efficiency gains 

to their customers in the form of lower prices. 

In sum, our main finding is that a large number of previous studies has probably underestimated 
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the effect of trade on efficiency changes within plants. Note that this result is not a foregone 

conclusion: In principle, TFPR could also overestimate actual efficiency gains – if markups rise 

more than efficiency. An extreme example would be exporters that raise their markups when tariffs 

fall, but do not invest in better technology. While our results suggest that such a strong response of 

markups is unlikely, we do observe significant markup increases among existing exporters when 

tariffs fall. This implies that the price bias of TFPR is weaker during trade liberalization. One 

interpretation is that export tariff declines have an effect akin to demand shocks, which creates an 

incentive to raise markups in models with endogenous markups such as Bernard et al. (2003) or 

Melitz and Ottaviano (2008). Consequently, it is more likely to find TFPR (i.e., markup) increases 

during periods of falling export tariffs. This may explain why the few studies that have identified 

export-related within-plant efficiency gains exploited periods of rapid trade liberalization (such as 

De Loecker, 2007; Lileeva and Trefler, 2010). 

Our results have two important implications for gains from trade: First, they rectify the bal- 

ance of within-plant efficiency gains versus reallocation across plants. So far, the main effects have 

been attributed to the latter. For example, Pavcnik (2002) estimates that reallocation is responsi- 

ble for approximately 20% productivity gains in export-oriented sectors during the Chilean trade 

liberalization over the period 1979-86. Using marginal cost as an efficiency measure that is more 

reliable than its revenue-based counterparts, we show that export-related within-plant efficiency 

gains probably have a similar order of magnitude. Second, our results underline the necessity for 

future empirical studies to use productivity measures that are not affected by changes in output 

prices – and to re-examine previous findings that used revenue productivity. In particular, future 

studies should make further progress where our analysis was mostly exploratory due to the limited 

variation in Chilean export tariffs. Ideally, more detailed tariff changes at the plant- or disaggre- 

gate industry-level should be combined with marginal costs as a more reliable proxy for efficiency 

gains. Finally, our results imply that relatively stable markups are the reason why efficiency gains 

are not fully translated into higher revenue productivity. Thus, future research should examine the 

relationship between markups and export expansions in more detail. 
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Figure 1: Trajectories for Export Entrants 

 
Notes: The left panel shows the trajectories for revenue productivity at the plant- and at the plant-product 

level. The right panel shows plant-product trajectories for price, marginal cost, and markup. Period t = 0 

corresponds to the export entry year. A product is defined as an entrant if it is the first product exported by 

a plant and is sold domestically for at least one period before entry into the export market. The trajectories 

are estimated using equation (11), and coefficients are reported in Table 2. Section 4.1 provides further 

detail. 
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Figure 2: Estimated Marginal Cost and Reported Average Cost 

 
Notes: The figure plots plant-product level marginal costs computed using the methodology described in Section 2 

against plant-product level average costs reported in the Chilean ENIA panel (see Section 3 for a detailed description). 

The underlying data include both exported and domestically sold products, altogether 98,688 observations. The figure 

shows the relationship between the two cost measures after controlling for plant-product fixed effects (with products 

defined at the 7-digit level) and 4-digit sector-year fixed effects. The strong correlation thus indicates that changes in 

computed marginal cost at the plant-product level are a good proxy for changes in actual variable costs. 
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Figure 3: Average Chilean Export Tariffs (2-digit industries) 

Notes: The figure plots the average export tariff for all 2-digit ISIC industries. We first compute average tariffs at the 

6-digit HS product level across all destinations of Chilean exports, using destination-specific aggregate export shares 

as weights. We then derive revenue-weighted average tariffs at the more aggregate 2-digit ISIC level. 
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TABLES 
 

 

Table 1: Plant-Level Stylized Facts 
 

(1) (2) (3) (4) (5) 

P lant Size Productivity  Wages  Markup 

Dependent Variable ln(workers) ln(sales)  ln(TFPR) ln(wage) ln(markup) 
 

Panel A: Unconditional Premia 

Export dummy 1.403*** 
(.083) 

2.227*** 
(.176) 

.133*** 
(.025) 

.402*** 
(.039) 

.0352** 
(.010) 

Sector-Year FE / / / / / 

R2 .26 .30 .99 .24 .09 

Observations 42,264 42,070 42,228 42,261 86,199 

Panel B: Controlling for Employment 

Export dummy  .648*** 

(.0885) 

.157*** 

(.0237) 

.201*** 

(.0303) 

.0354*** 

(.010) 

Sector-Year FE / / / / / 

R2 .26 .30 .99 .24 .09 
Observations 42,264 42,070 42,228 42,261 86,199 

Notes: The table reports the percentage-point difference of the dependent variable between 

exporting plants and non-exporters in a panel of 8,500 (4,900 average per year) Chilean 

plants over the period 1996-2005. All regressions control for sector-year effects at the 2- 

digit level; the regressions in Panel B also control for the logarithm of workers. Markups  

in column 5 are computed at the plant-product level. Standard errors (in parentheses) are 

clustered at the plant (col 1-4) and plant-product (col 5) level. Key:  *** significant at  1%; 

** 5%; * 10%. 
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Table 2: Within Plant-Product Trajectories for New Exported Products 
 

Periods After Entry -2 -1 0 1 2 3 Obs/R2
 

Panel A: Plant Level 

TFPR -.0108 .0236 .0198 .0149 .0313 .0157 2,029 

 (.0249) (.0230) (.0209) (.0253) (.0331) (.0374) .624 

Panel B: Product Level 

TFPR .00645 .0174 .00140 .0181 .0440 .0354 2,309 

 (.0228) (.0184) (.0172) (.0218) (.0292) (.0339) .541 

Marginal Cost -.0389 -.0533 -.106* -.151** -.240** -.282*** 2,309 

 (.0753) (.0579) (.0605) (.0753) (.0941) (.0982) .831 

Markup .00366 .0238 .00141 .0212 .0512* .0496 2,309 

 (.0254) (.0203) (.0183) (.0239) (.0300) (.0352) .820 

Price -.0352 -.0295 -.105* -.130* -.188** -.232** 2,309 

 (.0767) (.0560) (.0577) (.0740) (.0910) (.0922) .831 

Physical Quantities .00376 .0249 .111 .157* .170 .179 2,309 

 (.0978) (.0740) (.0710) (.0861) (.108) (.119) .809 

Reported Average Cost -.00238 -.0534 -.114* -.138* -.183* -.258** 2,309 

 (.0771) (.0619) (.0599) (.0764) (.0982) (.103) .517 
 

 

Notes: The table reports the coefficient estimates from equation (11). The regression for plant-level TFPR 

controls for plant fixed effects and sector-year effects (at the 2-digit level). All remaining regressions are run 

at the plant-product level (with products defined at the 7-digit level); they control for plant-product fixed effects 

and 4-digit sector-year fixed effects. A plant-product is defined as an export entrant if it is the first product 

exported by a plant and is sold domestically for at least one period before entry into the export market. Section 

4.1 provides further detail. Standard errors (clustered at the plant level in panel A, and at the plant-product 

level in panel B) in parentheses. Key: *** significant at 1%; ** 5%; * 10%. 
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Table 3: Matching Results: Estimated Trajectories for New Exported Products 
 

Periods After Entry 0 1 2 3 

TFPR -.0327 .0351 .0632 .0856* 
 (.0233) (.0327) (.0439) (.0502) 

Marginal Cost -.00354 -.162*** -.144** -.239** 
 (.0358) (.0603) (.0628) (.114) 

Markup -.0355 .0317 .0686 .0789 
 (.0264) (.0384) (.0416) (.0604) 

Treated Observations (Min/Max) 137/142 79/82 57/59 30/31 

Control Observations (Min/Max) 592/612 338/353 241/249 120/125 

Notes: Period t = 0 corresponds to the export entry year. Coefficients reflect the differential growth of each variable 

with respect to the pre-entry year (t = 1) between export entrants and controls, all at the plant-product level. The 

control group is formed by plant-products that had a-priori a similar likelihood (propensity score) of becoming export 

entrants, but that continued to be sold domestically only. We use the 5 nearest neighbors. Controls are selected from 

the pool of plant-products in the same 4-digit category (and same year) as the export entrant product. The specification 

of the propensity score is explained in Section 4.2 and in Appendix C. The number of treated and control observations 

differ across dependent variables; the minimum (Min) and maximum (Max) number of observations are reported. 

Robust standard errors in parentheses. Key: *** significant at 1%; ** 5%; * 10%. 

 

 

 

 

 
Table 4: Matching Results: Balanced Sample 

 

Periods After Entry 0 1 2 3 

TFPR .0571 .0954 .101 .110** 
 (.0401) (.0610) (.0640) (.0509) 

Marginal Cost -.179* 

(.0921) 

-.318** 

(.144) 

-.275* 

(.138) 

-.221* 

(.129) 

Markup .0443 .0766 .0845 .0901 
 (.0502) (.0745) (.0623) (.0595) 

Treated Observations 31 31 31 31 

Control Observations 119 119 119 119 

Notes: The results replicate Table 3 for the sample of plant-products that are observed in each 

period t = 2, ..., 3 (balanced panel). See the notes to Table 3 for further detail. Robust standard 

errors in parentheses. Key:  *** significant at 1%; ** 5%; * 10%. 
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Table 5: Tariff-Induced Export Entry 
 

 

 
Dependent Variable 

 First Stage 

(1) 

Export Dummy 

 Second Stage 

(2) (3) (4) 

MC Markup TFPR 

Panel A: Plant-Product Level 

Export Tariff 

 
First Stage F-Statistic 

Export Dummy 

-8.600*** 

(1.322) 

42.31 
       
 

— 

— — — 

              
  

-.209** -.0144 .0454 

[.011] [.812] [.214] 

For all regressions: 

Plant-Product FE 

log Sales 

Observations 

/ 

/ 

1,761 

/ / / 

/ / / 

1,761 1,761 1,761 

Panel B: Plant Level 

Export Tariff 

 
First Stage F-Statistic 

Export Dummy 

-8.084*** 

(1.024) 

62.38 
       
 

— 

— — — 

              
  

-0.338* -0.0679 -0.0219 

[.094] [.294] [.627] 

For all regressions: 

Plant FE 

log Sales 

Observations 

/ 

/ 

1,333 

/ / / 

/ / / 

1,333 1,333 1,333 
 

 

Notes: This table examines the effect of tariff-induced export entry on marginal costs, markups, and TFPR. In panel 

A we show plant-product results, while in panel B we show plant-level results. The samples include only plant- 

products (panel A) or plants (panel B) that become new export entrants at some point between 1997 and 2005. Export 

tariffs (at the 4-digit ISIC level) are used to instrument for the timing of export entry. The first stage results of the 

2SLS regressions are reported in col 1, together with the (cluster-robust) Kleibergen-Paap rK Wald F-statistic. The 

corresponding Stock-Yogo  value for 10% maximal IV bias is 16.4.   Second stage results (cols 2-4) report weak-    

IV robust Anderson-Rubin p-values in square brackets (see Andrews and Stock, 2005, for a detailed review). For 

multi-product plants in panel B, the dependent variables in cols 2 and 3 reflect the product-sales-weighted average, as 

described in Appendix B.2.  All regressions control for the logarithm of plant sales and include plant-product  (panel 

A) and plant (panel B) fixed effects. Standard errors are clustered at the 4-digit ISIC level, corresponding to variation 

in tariffs. Key:  *** significant at 1%; ** 5%; * 10%. 
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Table 6: Differential Effect on Marginal Cost for Initially Low and High Productivity Entrants 
 

Periods After Entry 0 1 2 3 

Low Initial Productivity .0131 -.302*** -.155** -.296 
 (.0528) (.0926) (.0722) (.180) 

High Initial Productivity -.0189 -.0358 -.135 -.197 
 (.0489) (.0743) (.0979) (.151) 

Treated Observations 142 82 59 31 

Control Observations 681 471 294 112 

Notes: The table analyzes heterogenous effects of export entry, depending on initial productivity. Coefficients are 

estimated using propensity score matching; see the notes to Table 3 for further detail. We use pre-exporting TFPR to 

split plant-products into above- and below- median productivity. Period t = 0 corresponds to the export entry year. 

Robust standard errors in parentheses. Key:  *** significant at 1%; ** 5%; * 10%. 
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Table 7: Investment and Input Price Trends Before and After Entry 

Period: Before Pre-Entry ‘Young’ Exp. ‘Old’ Exp. Obs/R2
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Notes: This table analyzes investment and input prices before and after export entry. ‘Old Exp.’ groups all periods 

beyond 3 years after export entry; ‘Young Exp.’ comprises export periods within 3 years or less after export entry; 

‘Pre-Entry’ groups the two periods before entry, and ‘Before’ includes all periods prior to that. Regressions in panel 

A are run at the plant level and control for plant sales, plant fixed effects, and sector-year effects (at the 2-digit level). 

The coefficients in each column represent the average of the different types of investment (in logs) in each respective 

period. Regressions in Panel B are run at the 7-digit input-plant level and control for plant-input fixed effects and 4-

digit input sector-year effects. In the first row of Panel B (‘All inputs’), we use all inputs observed in the export entry 

year; in the second row (‘Stable inputs’), we restrict the sample to the set of inputs that are also used at least two 

periods before and after export entry. The criteria for defining a plant as entrant are described in the notes to Table 2. 

Robust standard errors in parentheses. Key:  *** significant at 1%; ** 5%; * 10%. 

Panel A: Investment 

Overall .1131 .4051 .4426 .2916 2,612 
 (.431) (.311) (.287) (.425) .54 

Machinery .2453 .5428* .5718* .3181 2,612 
 (.432) (.313) (.291) (.436) .55 

Vehicles .0631 .0501 .0708 .0772 2,612 
 (.374) (.242) (.230) (.361) .37 

Structures -.0123 .1289 -.1395 .5261 2,612 
 (.422) (.303) (.274) (.455) .46 

Panel B: Input Prices 

All inputs -.151 -.0099 .190 .0558 8,078 
 (.179) (.172) (.148) (.200) .44 

Stable inputs -.225 -.146 -.0171 -.00252 2,912 
 (.202) (.230) (.210) (.203) .35 
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Table 8: Existing Exporters: Export Volume and Marginal Costs, Markups, and TFPR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Observations 4,026 2,372 1,901 1,666 1,456 1,267 

Notes: This table examines the within-plant correlations between export volume and marginal costs (panel A), markups 

(panel B), and TFPR (panel C). For multi-product plants, the dependent variable in panels A and B reflect the product- 

sales-weighted average, as described in Appendix B.2. The regressions in columns 1-6 are run for different samples, 

according to the plants’ export shares: col 1 includes all plants with positive exports, col 2 those whose exports account 

for more than 10% of total sales, col 3, 20%, and so on. All regressions control for the logarithm of plant sales and 

include plant fixed effects.  Standard errors (clustered at the plant level) in parentheses.  Key:  *** significant at 1%; 

** 5%; * 10%. 

 (1) (2) (3) (4) (5) (6) 

Export Share >0% >10% >20% >30% >40% >50% 

Panel A: log Marginal Cost Index 

log Exports .00939 -.0285 -.0535 -.0858 -.0618 -.0398 

(.0229) (.0562) (.0873) (.0936) (.122) (.189) 

R2 .937 .959 .960 .964 .965 .964 

Panel B: log Average Markup Index 

log Exports -.00498 .0312 .0420 .0747 .0591 .0217 

(.00886) (.0323) (.0477) (.0673) (.0842) (.111) 

R2 .703 .703 .688 .691 .695 .685 

Panel C: log TFPR 

log Exports -.00712 .0333 .0667* .114** .103 .0535 

(.00775) (.0286) (.0398) (.0544) (.0724) (.0958) 

R2 .923 .914 .907 .904 .899 .893 

For all regressions: 
Plant FE / / / / / / 

log Sales / / / / / / 
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△� Exports ’96-’05 .0338 

 
△� MC ’96-’05 

Panel C: Second Stage, log Average Markup 

 
 

△� Markup ’96-’05 
 

 

 

 

 

 

For all regressions: 

Plant FE 

log Sales / / / / / / 

Observations 4,026 2,372 1,901 1,666 1,456 1,267 

Notes: This table examines the effect of within-plant export expansions due to falling export tariffs on marginal costs 

(panel B), markups (panel C), and TFPR (panel D). The regressions in columns 1-6 are run for different samples, 

according to the plants’ export shares: col 1 includes all plants with positive exports, col 2 those whose exports 

account for more than 10% of total sales, col 3, 20%, and so on. The first stage results of these 2SLS regressions are 

reported in panel A, together with the (cluster-robust) Kleibergen-Paap rK Wald F-statistic. The corresponding Stock- 

Yogo value for 10% maximal IV bias is 16.4. Second stage results report weak-IV robust Anderson-Rubin p-values 

in square brackets (see Andrews and Stock, 2005, for a detailed review). For multi-product plants, the dependent 

variables in panels B and C reflect the product-sales-weighted average, as described in Appendix B.2. Export tariffs 

vary at the 4-digit ISIC level. All regressions control for the logarithm of plant sales and include plant fixed effects. 

Standard errors are clustered at the 4-digit ISIC level, corresponding to the level at which tariffs are observed.   Key: 

*** significant at 1%; ** 5%; * 10%. In each panel of the table, denotes the predicted change in the corresponding 

dependent variable due to export tariff reductions over our entire sample period (4.6 p.p. on average over the period 

1996-2005). 

Table 9: Tariff-Induced Export Expansions and Plant-Level Outcomes – 2SLS 

 (1) (2) (3) (4) (5) (6) 

Export Share >0% >10% >20% >30% >40% >50% 

Panel A: First Stage: Plant-level log exports 

Export Tariff -.735 -1.521** -2.087*** -1.771*** -1.345*** -.917*** 

(.915) (.627) (.436) (.273) (.347) (.289) 

 .0700 .0960 .0815 .0619 .0422 

First Stage F-Statistic .645 5.876 22.87 42.20 14.99 1.07 

 Panel B: Second Stage, log Marginal Cost Index   

log Exports (predicted) -2.153* -1.297*** -1.113*** -1.170*** -1.141** -.564 
 [.0766] [.0016] [.0006] [.0007] [.0166] [.471] 

 -.0728 -.0907 -.1068 -.0953 -.0706 -.0238 

 

log Exports (predicted) .237 .568** .478** .576*** .477 -.364 

[.678] [.0222] [.0178] [.0050] [.152] [.531] 

 .0080 .0398 .0459 .0469 .0295 -.0153 

 Panel D: Secon d Stage, log TFPR   

log Exports (predicted) .678 .613** .456** .590*** .571* .126 

[.139] [.0108] [.0371] [.0102] [.0583] [.854] 

 .0229 .0429 .0438 .0481 .0353 .0053 
△� TFPR ’96-’05 
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