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FIXED AND RANDOM EFFECTS IN PANEL DATA USING STRUCTURAL 

EQUATON MODELS 

ABSTRACT 

Applications of classic fixed and random effects models for panel data are common in 

sociology and in ASR. A primary advantage of these models is the ability to control for 

time-invariant omitted variables that may bias observed relationships. This paper shows 

how to incorporate fixed and random effects models into structural equation models 

(SEMs) and how to extend the standard models to a wide variety of more flexible models. 

For instance, a researcher can test whether a covariate's impact on the repeated measure 

stays the same across all waves of data; test whether the error variances should be 

allowed to vary over time; include lagged covariates or lagged dependent variables; 

estimate the covariance of the latent time-invariant variables with the observed time-

varying covariates; and include observed time-invariant variables in a fixed effects 

model. The paper explains how to take advantage of the estimation, testing, and fit 

assessment capabilities that are readily available for SEMs and how to reveal flaws not 

visible with typical assessment techniques. The paper is oriented towards applied 

researchers with most technical details given in the appendix and footnotes. 
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FIXED AND RANDOM EFFECTS IN PANEL DATA USING STRUCTURAL 

EQUATON MODELS 

 

INTRODUCTION 

Longitudinal data are more available today than ever before.  The National 

Longitudinal Study of Youth (NLSY), National Longitudinal Study of Adolescent Health 

(Add Health), Panel Study of Income Dynamics (PSID), and National Education 

Longitudinal Study (NELS) are just a few of the more frequently analyzed panel data sets 

in sociology.  The relative advantages of longitudinal data compared to cross-sectional 

are well-known (Halaby 2004) and panel data are permitting more sophisticated analyses 

than were available before.   

In sociology two common analysis tools for such data are referred to as the 

random and fixed effects models (Allison 1994; Guo and Hipp 2004).  Indeed, in this 

journal alone a number of recent papers have made use of fixed and random effects 

models (Alderson 1999; Alderson and Nielsen 1999; Conley and Bennet 2000; Mouw 

2000; Budig and England 2001; Wheaton and Clarke 2003; Yakubovich 2005; Beckfield 

2006; Matsueda, Kreager, and Huizinga 2006).  A major attraction of these models is that 

they provide a means to control for all time-invariant unmeasured (or latent) variables 

that influence the dependent variable whether these time-invariant variables are known or 

unknown to the researcher.  Given the likely presence of such omitted variables, this is a 

major advantage of these models.  As the term "time-invariant" suggests, these are 

variables that do not change over the period of observation while "time-varying" 

describes variables that change over time.  The major difference of random effects 
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models from the fixed effects model is that in the former the omitted time-invariant 

variables are assumed to be uncorrelated with the included time-varying covariates while 

in the latter they are allowed to correlate (Mundlak 1978).  The random effects model has 

the advantage of greater efficiency relative to the fixed effects model leading to smaller 

standard errors and higher statistical power to detect effects (Hsiao 2003).   A Hausman 

test enables researchers to distinguish between the random and fixed effects model 

(Hausman, 1978).  Statistical software for random and fixed effects models is readily 

available (e.g., xtreg in Stata and Proc GLM, Proc Mixed in SAS). 

Despite the many desirable features of the random and fixed effects models for 

longitudinal data there are a number of limitations of the standard implementations that 

are not fully appreciated by users.  First, these models have implicit restrictions that are 

rarely tested but that if wrong, could bias the estimated effects.  For instance, both the 

random and fixed effects models assume that the coefficients of the same covariate 

remain equal across all waves of data.  If individuals pass through major transition points 

during the time period of the study (e.g., actively employed to retired or adolescence to 

adult), this assumption of stable effects for each wave could be invalid. So in an analysis 

of say, income's effect on conservatism, our model forces the impact of income on 

conservatism to remain the same across all waves of data.  Another implicit restriction is 

that the unexplained variance stays the same over time.  This means that despite the 

changes that might be occurring in an individual's life, the error variance is not permitted 

to differ.   Another constraint is that the latent time-invariant variables must either 

correlate with all covariates as in the fixed effects model or be uncorrelated with all 

covariates as in the random effects model.  Even with strong prior evidence that some 
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correlations are zero and some are not, the researcher must choose all correlated or all 

uncorrelated when using these models.  Incorrectly assuming that the latent time-

invariant variable is uncorrelated with the observed covariates is likely to bias our 

estimates of effects. 

Yet another implicit constraint is that autoregressive relations with lagged 

dependent variables are set to zero.  In some areas, there may be reason to suspect that 

prior values of the dependent variable influence current values even net of other 

variables.  Hsiao (2003) and Halaby (2004) provide good summaries of the complications 

that emerge with the usual random and fixed effects estimators in models with lagged 

endogenous variables and the corrections needed might discourage researchers from 

exploring these possibilities.  A closely related alternative is that there are lagged effects 

of a covariate on the dependent variable, yet these lagged variables are rarely 

considered.1   

If false, any of these preceding implicit restrictions could lead to biased and 

inconsistent estimators of the coefficients in the model.  Furthermore in the fixed and 

random effects models, the observed covariates in the models are not permitted to 

influence the latent time-invariant variable.   Given the zero correlation restriction 

between the covariates and latent time-invariant variable in random effects models, this is 

hardly surprising.  The fixed effects model does allow correlation, but it does not permit 

direct effects between the covariates and the time-invariant variables.   

Problems with these implicit restrictions go undetected because the usual fixed 

and random effects models lack tests of overall fit of the hypothesized model to the 

saturated model.  As we will explain, the traditional fixed and random effects models are 
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overidentified models. That is, the model structure implies that the means and covariance 

matrix of the observed variables can be predicted by the parameters of the model and 

there is more information in the means and covariance matrix than the minimum required 

to estimate parameters. This excess information allows overidentification tests that 

provide information on the goodness of fit of the model relative to fitting a saturated 

model.  The overidentification test is evidence relevant to the validity of the model for the 

data.  The Hausman test just compares the fixed and random effects models.  It is 

possible that neither is adequate and this would not be known from the usual fixed and 

random effects output. 

An advantage of the fixed effects model over the random effects model is that it 

permits the latent time-invariant variable to correlate with the time-varying covariates.  

However, the implementation of the fixed effects model does not report the magnitude of 

the correlations, something that could provide a better understanding of the latent time-

invariant variable.  Another disadvantage of the typical implementation of the fixed 

effects estimator is that it does not permit the researcher to include time-invariant 

observed variables such as sex, race, place of birth, etc.  This is a disadvantage to the 

degree that a researcher is interested in the impact of these time-invariant observed 

variables. 

Our purpose is to show how researchers can easily overcome these limitations by 

incorporating the fixed and random effects models into a structural equation modeling 

framework.  More specifically, we will demonstrate that the traditional fixed and random 

effects models can be formulated as structural equation models (SEMs) and with the 

appropriate estimator will reproduce the estimates obtained with standard procedures.2  
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More importantly, we will create SEMs that overcome all of the preceding limitations 

that we described above for the fixed and random effects models.  That is, we will show 

how to test whether coefficients or error variances are equal at each wave; we will 

illustrate how estimates of the covariance of the latent time-invariant variable and the 

covariates is estimable; we will develop models that permit lagged dependent variables or 

lagged covariates and create new models that permit time-invariant observed variables in 

fixed effects like models; we will provide alternatives to the Hausman test for comparing 

fixed and random effects models and will give a test of whether either of these models is 

adequate.  We will illustrate our results using a model and data from an excellent 

empirical application of traditional fixed effects estimators that was published in this 

journal to demonstrate that we can gain new insights with this approach even in a well-

executed study.   

We emphasize that this paper is oriented to readers who are familiar with 

traditional fixed and random effects estimators.  Our citations above to recent ASR 

publications reveal their presence in a broad range of fields in sociology and suggest that 

these techniques have broad appeal.  Though new results are provided, we do not intend 

our results for specialists in quantitative methods though we hope that such readers will 

gain something from reading this paper.  In fact, the models we describe can be readily 

implemented with any of the numerous SEM software programs (e.g., LISREL, AMOS, 

Mplus, EQS, etc.) that are widely available.  Because of our intended audience, full 

technical details are not provided in the text, but are reserved for footnotes, the appendix, 

and in the cited works. 
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TRADITIONAL FIXED AND RANDOM EFFECTS MODELS 

In this section we will provide a brief overview of the traditional fixed and 

random effects models for pooled cross-sectional and time-series data that are commonly 

used.  More detailed accounts are in Allison (2005), Baltagi (2001), Greene (1997), 

Halaby (2004), Hsiao (2003), and Wooldrige (2002).  Our overview will emphasize 

restrictions that are often implicit in other presentations in preparation for the more 

general models that we present in a later section.  We begin with a general model that can 

represent either the random or fixed effects models depending on the restrictions placed 

on it.  Then we discuss the random effects model, the fixed effects model, and the 

Hausman test that distinguishes between them. 

 

General Model 

Consider the following equation 

 

 itiityittyity εη +++= zBxB zx  (1) 

where yit  is the value of the dependent variable for the i  th case in the sample at the t  th 

time period, x it  is the vector of time-varying covariates for the i  th case at the t  th time 

period, tyxB  is the row vector of coefficients that give the impact of x it  on yit  at time t , 

zi  is the vector of observed time-invariant covariates for the  i  th case with tyzB  its row 

vector of coefficients at time t , iη  is a scalar of all other latent time-invariant variables 

that influence ity , and itε  is the random disturbance for the i  th case at the t  th time 

period with 0)( =itE ε  and  2)( 2
titE εσε = .  It also is assumed that itε  is uncorrelated with 
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itx , iz , and iη .  As an example, ity  might be the infant mortality rate in county i  at time 

t , itx  might consist of time-varying variables such as unemployment rate, physicians per 

capita, medical expenditures per capita, etc. all for county i  at time t , iz  might be time-

invariant variables such as region and founding date of county, and iη   would contain all 

other time-invariant variables that influence infant mortality, but that are not explicitly 

measured in the model. 

There are several things to notice about this equation.  One is that i   always 

indexes the cases in the sample while t  indexes the wave or time period.  If either 

subscript is missing from a variable or coefficient, then the variable or coefficient does 

not change either over individual or over time.  For instance, iz  and iη  have no t  

subscript, but do have an i  subscript.  This means that these variables vary across 

different individuals, but do not change over time for that individual3  and are time-

invariant variables.  Common examples of time-invariant observed variables ( iz ) for 

individuals would be characteristics such as race, sex, and place of birth.  The time-

invariant latent or unobserved variables that are in iη  represent the collection of all time-

invariant variables that influence ity , but that are not explicitly measured and included in 

the model.  Implicitly, this variable has a coefficient of "1" that does not change over 

time.  Intelligence or stable personality characteristics are examples of two types of 

variables that might influence an outcome of interest, but not be explicitly measured, are 

stable, and would therefore be part of iη .  In a similar fashion, the absence of an ı  

subscript means the coefficient does not change over individual.  If a time period or wave 

of data were distinct, then we might include a dummy variable, say tD , that is the same 
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value across all individuals but could differ over time, though we do not do this in the 

above equation.  In the above model, tyxB  and tyzB  are assumed to be the same values 

over individuals, but the subscript of t  permits these to differ over time.  This is different 

than the usual presentation of these models where the effects are assumed constant over 

time and the t  subscript is missing.  The subscript of t  on 2

tε
σ  signifies that the error 

variance for the equation can differ depending on the wave of data.   

Equation (1) is more general than the traditional fixed and random effects model.   

However, we can use it to get to these models by introducing constraints.  We do so 

starting with the random effects model. 

 

Random Effects Model 

The random effects model is 

 itiiyityity εη +++= zBxB zx  (2) 

where all variables are defined as above.  At first glance this appears the same as 

equation (general model), but there are differences.  First, the random effects model 

assumes that the effects of itx  and iz  on ity  do not change over time.  This is why xB y  

(no t  subscript) replaces tyxB  and zB y  replaces tyzB .  Second, the random effects model 

assumes that i  is a random latent variable that is uncorrelated with itε , itx  and iz .  

Considering the type of unmeasured time-invariant variables that might appear in i  

(e.g., intelligence, personality characteristics), it is a strong assumption to force these to 

be uncorrelated with all other explanatory variables in the analysis.  If this assumption or 

the assumption of the same coefficients over time is incorrectly imposed, either can bias 
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the estimated effects that we find.  Another assumption of the random effects model is 

that the error variance does not change over time ( 22

εε σσ =
t

).  Violation of this 

assumption can lead to inaccuracy of the estimates.    

One common estimator of the coefficients and variances of the error and time-

invariant latent variable is the feasible Generalized Least Square (GLS) estimator (e.g., 

Hsiao 2003:35-38; Wooldridge 2002:257-65).  In this approach, an estimate of the 

variances of iη  and of itε  are used to form the "weight matrix" for GLS estimation.4  If 

the preceding assumptions hold, then this procedure has desirable large sample properties 

such as consistency, asymptotic unbiasedness, and readily available significance tests.  It 

also provides an estimate and test of whether there are latent time-invariant variables 

( 0: 2 =ησoH ) such that zero variance of i  implies their absence.5  A maximum 

likelihood estimator of the random effects model also is possible under the assumption 

that iη  and itε  come from a normal distribution (Hsiao 2003:39-41).  One or both of 

these estimators are available in statistical software such as SAS (e.g., TSCSREG) or 

STATA (xtreg).  However, the use of these procedures presupposes that the assumptions 

of the random effects model hold, with the assumption that the latent time-invariant 

variable is uncorrelated with all observed covariates being the most problematic 

assumption.  The fixed effects model removes this restriction. 

 

Fixed Effects Model 

The equation for the fixed effects model is 

 itiityity εη ++= xB x  (3) 
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where the symbols are defined as above.  The most obvious difference between the fixed 

effects model and the random effects one is the absence of the iy zB z  term.  These are the 

time-invariant observed variables and their coefficients.  The traditional fixed effects 

model does not include these variables, but rather folds them into i , the latent time-

invariant variable term.  The reason is that the fixed effects model allows i  to correlate 

with itx  and if we were to also include time-invariant observed variables ( iz ), these 

would be perfectly collinear with i  and we could not get separate estimates of the 

effects of iη  and iz .  Hence, we allow iη  to include iz  as well as latent time-invariant 

variables.  Though losing the ability to estimate the impact of time-invariant variables 

such as race, sex, etc. is a disadvantage of the technique, we still are controlling for their 

effects by including iη  in the model.  In addition, we have a more realistic assumption 

that the iη  variable correlates with the time-varying covariates in itx . In the hypothetical 

example of infant mortality rates in counties, we could not include the time-invariant 

variables of region and founding date explicitly in the model.  But these and all other 

time-invariant variables would be part of iη  and hence controlled. If a researcher is not 

explicitly interested in the specific effects of the time-invariant variables, then this is not 

a serious disadvantage of the fixed effects model since the potentially confounding 

effects of all time-invariant variables would be controlled.  In addition, we allow these 

time-invariant variables to correlate with the time varying variables such as 

unemployment, physicians per capita, and so on. 

Another subtle difference of the fixed effects versus the random effects model is 

that the iη  variable is a fixed unknown constant for each case.   That is, the collection of 
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time-invariant variables takes a single unchanged value rather than being one realization 

of a random variable in the fixed effects model.  In contrast, the random effects model 

treats iη  as a latent random variable.  In practice, this distinction between iη  as a 

constant that differs by case or as a random variable is largely inconsequential (Mundlak 

1978).  A far more important difference is that the fixed effects model allows iη  to 

correlate with itx  whereas the random effects model forces this correlation to zero.  

Though on this count, the fixed effects model is less restrictive than the random effects 

models, both models contain often unrealistic restrictive assumptions. For instance, both 

models assume that the coefficients of the time-varying variables ( xB y ) do not change 

over time, meaning that these variables have the same effect in each wave of data and the  

iη   variables have the same effect (implicit coefficient of 1) on yit  for each time period.  

The traditional fixed effects like the random effects models also assumes that the error 

variance is constant over time ( 22

εε σσ =
t

).   

Two common estimators for the fixed effects model are the least squares dummy 

variable (LSDV) estimator and the mean transformed data approach.  In LSDV a separate 

dummy variable is coded for each case and entered into the model to control for  i   (see, 

e.g., Hsiao 2003).  Though this is tedious and sometimes impractical for large samples, it 

can work well for small samples and the coefficients for the dummy variables provide an 

estimate of the iη  for each case.   In large samples researchers are more likely to run their 

model on a transformation that removes the fixed effects from the model.   In this case, 

( ·iit yy − ) is regressed on ( ·iit xx − ) where ·iy  is the mean of the dependent variable for 

the i th case across all waves of data and ·ix  is the mean of the time-varying variables for 
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the i th case across all waves.  In this approach, the latent time-invariant variable can be 

estimated as =iη  ( ·· iyiy xB x− ) [see, e.g., Wooldridge 2002:265-272]. 

 

Hausman Test 

Though they share similar features, the random and fixed effects models differ in 

important ways.  Most importantly, the random effects model assumption that the latent 

time-invariant variables ( iη ) are uncorrelated with the time-varying ( itx ) and time-

invariant ( iz ) variables is a strong assumption.  If true, then the random effects model 

has the advantage of permitting time-invariant observed variables ( iz ) as well as time-

invariant latent variables ( iη ) in the model.  It also leads to a more efficient estimator 

than the fixed effects model in that the standard errors of the coefficients will tend to be 

smaller enabling the detection of smaller effects.  However, if the assumption of iη  being 

uncorrelated with itx  and iz  is incorrect, then application of the random effects model 

will bias coefficients and possibly undermine a researcher's results. 

The Hausman Test is a way of determining the plausibility of the fixed versus 

random effects model (Greene, 1997).   Formally, the test is 

 

THausman ByxFE ByxRE avar ByxFE avar ByxRE
1

ByxFE ByxRE
 

           (4) 

where yxFEΒ̂  are the coefficient estimates of the time-varying covariates from the fixed 

effects model and yxREΒ̂  are the corresponding estimated coefficients from the random 
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effects model.  The ( )yxFEavar Β̂  is the estimate of the asymptotic (large sample) 

variances and covariances of the yxFEΒ̂ estimated coefficients and    ( )yxREavar Β̂  is the 

analogous quantity for the estimate of yxREΒ̂ .  Intuitively, the coefficients from the fixed 

and random effects model should converge to the same parameter values if the random 

effects model is true.  That is, the fixed effects model might needlessly allow the latent 

time-invariant variables to correlate with the time-varying variables, but other than 

leading to more variance of the coefficients, the estimator remains a consistent estimator 

of the true coefficients.  This implies that yxFEΒ̂  and yxREΒ̂  should only differ within 

sampling fluctuations.  The central term in brackets on the right-hand side of equation 

(Hausman test) is an estimate of the sampling variance of this difference in coefficients.  

The test statistic, HausmanT , follows a chi-square distribution in large samples with degrees 

of freedom equal to the number of coefficients for the time-varying variables.  The null 

hypothesis is that the random effects model is true so that these coefficients are equal in 

the population.  The alternative hypothesis is that at least one of these coefficients differ 

and hence the fixed effects model is more plausible.  In practice, it is quite common to 

reject the null hypothesis of the random effects model in favor of the fixed effects model.   

 

Empirical Example 

We illustrate the classic fixed and random effects models by examining the wage 

penalty for motherhood using data from the National Longitudinal Survey of Youth 

(NLSY). The NLSY is a national probability sample of 12,686 young men and women 

who were 14 to 22 years old when they were first interviewed in 1979; blacks and 
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Hispanics are oversampled. These individuals were interviewed annually through 1994 

and biannually thereafter. We begin by replicating the results from an earlier study by 

Budig and England (2001), published ASR, and examine data from the 1982-93 waves of 

the NLSY. Budig and England were interested in whether the relationship between 

number of children and women's earnings is spurious or causal, and use fixed effects 

models to address this question. This study builds on a still earlier study, also published 

in ASR, Waldfogel (1997), which also uses traditional fixed effects estimators to examine 

the wage penalty for motherhood. Budig and England's study is an excellent empirical 

application of traditional fixed effects estimators. Nevertheless, we will show how we 

gain new insights using our approach. 

  We limit our sample to women employed part-time or full-time during at least 

two of the years from 1982-93, to replicate Budig and England's sample selection. Out of 

a total of 6,283 women in the 1979 NLSY, we have a final sample size of 5,285 women.6 

The dependent variable is log hourly wages in the respondent's current job, where person-

years whose hourly wages appear to be outliers (i.e., less than $1 or above $200 per hour) 

are eliminated. The main independent variable of interest is the total number of children 

that a respondent reported by the interview date.7 Our baseline model, Model 1, includes 

only number of children as a covariate. In Model 2, we control for marital status using 

dichotomous measures to indicate married and divorced (including separated and 

widowed), where never married is the reference category. In Model 3, we further control 

for measures of human capital including: years of education, years of full-time and part-

time work experience, years of full-time and part-time job seniority, and the total number 

of breaks in employment.8 We also control for whether or not the respondent is currently 
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in school. Budig and England also include a fourth model with a range of job 

characteristics. However, they find that these additional variables do little to change their 

estimates of the wage penalty for motherhood. We therefore only replicate the first three 

models. 

[TABLE 1 ABOUT HERE] 

For all their models, Budig and England conduct a Hausman test to assess 

whether random effects models were adequate, and in all cases, they find that the test 

indicated a need for fixed effects models. Therefore, they do not present the estimates for 

random effects models, only for fixed effects models and OLS models. In Table 1, we 

present our estimates of the effect of number of children on log earnings for Models 1-3 

using Stata SE 9.0 xtreg for both fixed effects and random effects models. These results 

generally replicate Budig and England's fixed effects findings [(reported in Table 2 of 

Budig and England (2001)], with slight differences in Model 3.9 We find a 7 percent 

wage penalty per child that decreases to about a 4 percent penalty with controls for 

human capital variables. Random effects estimates for Models 1 and 2 are larger, 

indicating about an 8 percent penalty per child, but the estimate decreases to less than 4 

percent with controls for human capital variables. We also conduct Hausman tests for 

Models 1-3 to determine whether random effects models performed adequately; Model 1 

has a HausmanT  = 39.66 with 4 degrees of freedom, Model 2 a HausmanT  = 68.56 with 6 

degrees of freedom, and Model 3 a HausmanT  = 349.37 with 13 degrees of freedom, each 

indicating that the fixed effects were preferred to the random effects models. 

These results represent the traditional random and fixed effects models and 

software.  We now turn to how we can replicate these results and create alternative 
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models by moving to SEMs. 

 

TRADITIONAL AND ALTERNATIVE MODELS AS SEMS 

Statistical software that has procedures to handle fixed and random effects models 

generally provide specialized procedures that are customized to these models.  In 

addition, there are some extensions to these models that overcome some restrictions that 

we have mentioned such as allowing the error variance to vary over time, including 

lagged dependent variables, and permitting autocorrelated disturbances.  However, there 

does not appear to be any software that permits all these options and there are other 

limitations of the traditional models that are not addressed.  In this section, we 

demonstrate that generic structural equation models (SEMs) software can incorporate 

these traditional models and that doing so renders advantages.  SEMs refer to a general 

multiequation model that permits latent and observed variables, multiple measures of 

latent variables, and takes account of measurement error when estimating relationships 

(see e.g., Bollen 1989; Arminger and Browne 1995).  SEMs are sufficiently general so 

that they can incorporate the traditional and nontraditional random and fixed effects 

models as special cases.  It is this aspect that is of primary interest to us. 

 

Random Effects Model 

The traditional random effects model equation is 

 itiiyityity εη +++= zBxB zx  (5) 

where the definitions and assumptions were given above.  Figure 1 is a path diagram 

representation of a random effects model that is kept simple with a single time-varying 
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variable ( x s) for four waves of data and a single time-invariant variable ( 1z ).  A path 

diagram is a graph that represents a multiequation system and its assumptions.  By 

convention, boxes represent observed variables, ovals represent latent variables, single-

headed straight arrows represent the direct effect of the variable at the base of the arrow 

on the variable at the head of the arrow, and two-headed arrows such as those connecting 

the  x s and  1z   stand for possible associations between the connected variables where 

that association is taken account of, but not explained within the model.10  To simplify 

the notation the i  subscript is excluded for the variables.  It is noteworthy that the latent 

time-invariant variable (η ) is part of the model, but it is shown to be uncorrelated with 

the time-varying variables ( tx ) and the time-invariant variable ( 1z ) since there are no 

two-headed arrows linking it to the observed variables.   The direct impact of the latent 

time-invariant variable (η ) on the repeated measures ( y s) is equal to 1 as is implicit in 

the equation for the random effects model. 

[FIGURE 1 ABOUT HERE] 

We could remove many of the restrictions that are implicit and explicit in this 

model (e.g., equal coefficients over time, equal error variances).  The modifications are 

so similar to those for the fixed effects model that we momentarily postpone discussing 

them until we present the SEM approach to the fixed effects model in the next section. 

 

Fixed Effects Model 

The traditional fixed effects model equation is 

 itiityity εη ++= xB x  (6) 

where all symbols and assumptions are as previously.   This model also is straightforward 
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to treat as a SEM.  Figure 2 is a path diagram representation of a fixed effects model that 

is kept simple with a single time-varying variable.  Easily visible within the diagram is 

the covariance of the time-varying tx1  and η  that is part of the fixed effects specification.  

But one difference from the usual implementation of fixed effects models is that the 

covariances of the time-varying variables with η  is available.  This can provide the 

researcher a better sense of the properties of these latent time-invariant variables and their 

pattern of associations.  The equality of the coefficients from tx1  to ty  is shown by using 

the same coefficient for each path as is the coefficient  of 1 from η  to ty .  But within 

this SEM framework it is straightforward to permit more flexible structures.  In our 

empirical application, the repeated measure ( ty ) would be wages, the number of children 

is a time-varying covariate ( tx1 ) that we initially assume to have the same impact on 

wages during each period, and all omitted time-invariant variables (e.g., intelligence, 

motivation, other stable personality traits are combined in η  with this latent variable 

permitted to correlate with tx1 . 

[FIGURE 2 ABOUT HERE] 

Loosening equality restrictions 

It is straightforward in a SEM to construct a fixed effects model where the time-

varying variables itx  are permitted to have different effects at different times so that we 

have tyxB  instead of xB y  leading to itiittyity εη ++= xB x .  Furthermore, we can easily 

allow the error variances to differ over time and estimate 2

tε
σ  where t  distinguishes the 

error variances at the different waves.  It is even possible to allow the latent time-

invariant variables to have different effects on ity  by adding a coefficient, say tλ  to iη  
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leading to 

 .y ititittyit εηλ ++= xB x  (7) 

At least one of the tλ  should be set to a one to scale the latent time-invariant variables.   

For instance, the impact of personality characteristics or intelligence as latent time-

invariant variables might change on an outcome such as depression as a person ages.  

This could be tested by including tλ  as a coefficient for iη .  Analogous modifications are 

available for the random effects model. 

 

Lagged effects 

Lagged values of the time-varying variables are possible by adding those lagged 

values to the vector, itx .  However, this will lead to the loss of the first wave of data 

since the lagged value of the time-varying covariate is not available and thus cannot be 

included.  The fixed effects equation could represent this model, though there would be 

one fewer wave of data.   The path diagram would be modified to show these lagged 

effects. 

Lagged endogenous variables for autoregressive effects are also straightforward 

to include.  Here the new equation would be  

 itiitityit yy εηρ +++= −1xB x  (8) 

where ρ  would be the autoregressive effect of 1−ity  on ity .  Here too we would lose one 

wave of data due to the use of a lagged variable.  Furthermore, the first wave 1iy  should 

be treated as predetermined and correlated with the time-varying ( itx ) and latent time-

invariant variables ( iη ).  An added complication to check with lagged endogenous 
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variables is whether there is an autoregressive disturbance.  This is particularly 

problematic if present with a lagged dependent variable since it creates a correlation 

between the disturbance and explanatory variable.  In the SEM approach we can treat this 

by adding an autoregressive relation between the disturbance term.   Figure 3 is a 

modified version of Figure 2 that includes the lagged endogenous variable.  We could 

further modify this to include an autoregressive disturbance provided we allow an 

association between 2iε  and 1iy  that would be created by the autocorrelation.  As we 

explain below, using a SEM model we can perform tests of autoregressive dependent 

variables (or autoregressive disturbances).  Similar changes apply to the random effects 

model. 

[FIGURE 3 ABOUT HERE] 

Incorporating observed time-invariant variables 

The traditional fixed effects model in which the latent time-invariant variable has 

a constant impact on y  over time does not permit time-invariant observed variables ( iz ).  

However, there are special situations where we can introduce time-invariant observed 

variables easily in the SEM formulation.  One such case is if a researcher hypothesizes 

that the observed time-invariant variable of interest is uncorrelated with the latent time-

invariant variable (Allison and Bollen, 1997).  Though this can be a difficult assumption 

to satisfy, keep in mind that it is a weaker assumption than that made with the traditional 

random effects model.  Recall that the random effects model assumes that the latent time-

invariant variable ( iη ) is uncorrelated with both the time-varying variables ( itx ) and the 

time-invariant variables ( iz ).  The hybrid model we are presenting allows iη  to correlate 

with itx  but sets iη  to be uncorrelated with iz .  Furthermore, we do not need to force all 
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the time-invariant variables to be uncorrelated with iη , but can allow just one or a few to 

be uncorrelated.  The other correlated observed time-invariant variables are dropped from 

the model and allowed to be part of the  i   variable.  The SEM approach then allows for 

a hybrid model that stands between the fixed and random effects model with regard to the 

treatment of observed time-invariant variables. 

Suppose that we are unwilling to assume that any of the observed time-invariant 

variables are uncorrelated with the latent time-invariant variables, but we still have a 

substantive interest in the impact of sex, race, or other observed time-invariant variables.  

There is another possibility.  We can add an equation to the model where  i   is the 

dependent variable and the time-invariant observed variables are its predictors.  The 

equations for this model would be 

 
iii

itiityity

ηη εη

εη

+=

++=

zB

xB

z

x  (9) 

where zBη  gives the coefficients of iz  on iη  and iηε  is a disturbance with a mean of zero 

and uncorrelated with the covariates.  Figure 4 is a path diagram of this model. 

FIGURE 4 ABOUT HERE] 

This iη  equation permits the time-invariant observed variables to have indirect 

effects on ity  through iη .11  In addition, examination of the 2R  of this equation would 

reveal to the reader how well the observed time-invariant variables predict the latent iη .  

A high value suggests that the observed time-invariant are closely associated with the 

latent ones. 

 



  26 

Estimation 

A first step in estimating these models in a SEM is preparing the data set.  Panel 

data commonly appears in one of two forms.  One is the long form where observations of 

the same individual are stacked on top of each other.  Each row of the data set in say a 

sample of individuals over several years would be a "person-year."  Creating this data 

structure leads to a "long" data set.  The wide form of data has each row referring to a 

different individual.  The variables give the variable values for a particular individual in a 

particular wave of the data.  So if an individual is observed for five years of income, then 

five income variables are created for that person, one for each year.  Because new 

variables are created to refer to each time wave, this leads to a "wide" data set and hence 

the term the wide form.  Some statistical software have routines that enable easy 

movement between the long and wide form of panel data (e.g., in Stata, reshape) and this 

simplifies data preparation.  The wide form is most suitable for the SEM approach that 

we describe.   

Though there are a variety of estimators for any SEM, the default and dominant 

estimator for continuous dependent variables is the maximum likelihood estimator 

(MLE).  The MLE is derived under the assumption that the disturbances ( itε ) come from 

a multivariate normal distribution (Jöreskog 1973; Bollen 1989:126-28).  Under these 

conditions, the coefficients and parameter estimates of the model have the desirable 

properties of MLE.12  The appendix gives a more formal presentation of the model and 

MLE fitting function for SEMs.  There is much work in the SEM literature that examines 

the robustness of the ML estimator to this assumption and it finds conditions where 

normality is not required for accurate significance tests (e.g., Satorra, 1990).  
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Furthermore, there are other readily available estimators for SEMs that either do not 

require normal disturbances or that correct for nonnormality (e.g., Bollen and Stine 1990, 

1993; Satorra and Bentler 1994).  All of this literature suggests that this distributional 

assumption is not critical in that there are several options to pursue if it is violated.  

 

Missing data 

Attrition or other sources of missing values on variables in panel analysis is 

common.  It is useful to distinguish between data missing completely at random (MCAR) 

and missing at random (MAR) [Rubin and Little 1987; Schafer 2000].  MCAR suggests 

that the missing data values are a simple random sample of all data values.  MAR is less 

restrictive.  MAR assumes that the probability of an observation being missing can 

depend on the observed data, but it cannot depend on the missing data.  In a SEM there 

are two options for treating data that are MCAR or MAR.  One is the direct MLE 

approach that allows the variables available for a case to differ across individuals and that 

estimates the parameters with all of the nonmissing variable information (Arbuckle 

1996).  The second option is multiple imputation where multiple data sets are imputed, 

estimated, and their estimates combined.  We apply the direct MLE in our application. 

 

Tests of Model Fit 

SEMs have tests of overall model fit that we can use to assess the fit of the fixed 

and random effects as well as the hybrid models that we have described here.  To 

understand these tests, consider the null hypotheses of  

 
)(
)(
θΣΣ
θμμ

=
=

 (10) 
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where μ  and Σ  are the means and covariance matrix of the observed variables and )(θμ  

and )(θΣ  are the model-implied means and covariance matrix of the observed variables.  

The θ  that is part of the model-implied means and covariance consists of the free 

parameters (e.g., coefficients) of a model.  Each model that we specify will have a set of 

parameters to estimate.  In addition, each model specification implies a particular form of 

)(θμ  and )(θΣ  that predicts the means and covariance matrix.  See the Appendix for 

these implied moment matrices for our models.   If the model is valid, then having the 

parameter values will exactly reproduce the means and covariance matrix, that is, μ  and 

Σ , of the observed variables.  If the model is incorrect, then )(θμ  and )(θΣ  will not 

exactly reproduce  μ  and Σ  , even in the population.   In light of this, the null hypothesis 

in equation (moment Ho) is a test of the validity of the model.  Rejection suggests that the 

model is incorrect while failure to reject suggests consistency of the model with the data.   

The MLE provides a readily available test statistic, say T , that is a likelihood 

ratio test that asymptotically follows a chi-square distribution with degrees of freedom of 

( ) tPPdf −+= )3(2
1  where P  is the number of observed variables and  t   is the number 

of free parameters estimated in the model.  The null hypothesis of this likelihood ratio 

test is )(&)(: θΣΣθμμ ==oH .  This corresponds to the implied moment hypotheses 

described earlier.   

Statistical power raises a complication in the use of the likelihood ratio test.  

Large samples of several hundred or more cases generally have considerable statistical 

power to detect even minor misspecifications.  In practice, this means that nearly all 

models will be rejected in a sufficiently large sample and this might be due to errors in 

specification that most would consider trivial.  A direct way of approaching this is to 



  29 

estimate the statistical power of a model and sample (e.g., Satorra and Saris 1985; 

Matsueda and Bielby 1986).   

Another way of assessing fit is with alternative measures of fit that have emerged 

in the SEM literature.  In general it is good practice to report several fit indices along 

with the chi-square test statistic (T ), degrees of freedom, and p-value.  Several that we 

have found useful are reported below: 

 

Baseline fit indices 

One family of fit indices in SEMs are baseline fit indices.  They are called 

baseline fit indices because they are measures of fit that compare the fit of the 

researcher's hypothesized model to a very restrictive alternative model called the baseline 

model.  The logic behind the baseline fit indices is that a researcher's hypothesized model 

should have clearly superior fit to the baseline model if the specified model is plausible.   

The fit indices provide a measure of relative fit of the hypothesized to the baseline model. 

Other than the chi-square test, the Tucker and Lewis (1973) Index is perhaps the 

oldest index used in SEM.  It is calculated as 

 
1/
//
−

−
=
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where bT  [ bFN )1( −= ] and mT  [ mFN )1( −= ] are chi-square test statistics for a baseline 

model and the hypothesized model, respectively, and bdf  and mdf  are the corresponding 

degrees of freedom.  The baseline model is typically a model where all observed 

variables are uncorrelated and their variances and means are freely estimated.  The TLI  

compares the fit of the hypothesized model to the baseline model while taking account of 
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the degrees of freedom of each model.   

The Incremental Fit Index (IFI) [Bollen 1989] is another baseline fit index.  Its 

definition is 

 
mb

mb

dfT
TTIFI

−
−

=  (12) 

where terms are defined the same as described for the TLI  .  The Relative Noncentrality 

Fit Index ( RNI ) [McDonald and Marsh 1990; Bentler 1990] is 
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Ideal fit for all three of these indices is a value of 0.1 .  Models with indices below 

90.0  are typically deemed unacceptable.  Although the exact distributions of these fit 

indices are unknown, simulation evidence suggests that their means of sampling 

distributions are stable across sample size except when the model fit is very poor.   

 

Stand-alone fit indices 

As the name suggests, stand-alone fit indices do not involve a comparison of a 

model's fit to a baseline model.  Two useful stand-alone fit indices are the Root Mean 

Square Error of Approximation ( RMSEA ) [Steiger and Lind 1980) and the Bayesian 

Information Criterion ( BIC ) [Schwarz 1978].  The formula for the RMSEA is 

 
m
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An attractive feature of the RMSEA  is that it has a confidence interval so that researchers 

have a better idea of its sampling distribution (Browne and Cudeck 1993).  Common 

standards for the RMSEA  are that values less than 05.0  signify a reasonable fit whereas 
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values that exceed 10.0  suggest poor fit.  However, recent evidence suggests that these 

standards might work for large samples, but would be inappropriate for small samples 

(e.g., 150<N ). 

Schwartz (1978) proposed the BIC as a way to approximate the Bayes factor in 

comparing statistical models.  Raftery (1993 2005) has discussed the use of the BIC in 

SEM.  A useful formula for the BIC is 

 )ln(NdfTBIC mm −=  (15) 

where mT  is the chi-square test statistic, mdf  are its degrees of freedom, ln (.) is the 

natural log, and N  is the sample size.  In this form, BIC compares the hypothesized 

model to the saturated model and negative values favor the hypothesized model whereas 

positive values favor the saturated model.  In general, the lower the BIC , the better is the 

fit of a model.  Jeffrey's (1961) suggests guidelines for interpreting the magnitude of the 

BIC.  We use Raftery's (2005) modification of these so that absolute values of BIC of 

20 −  are weak differences, 62 −  are positive evidence, 106 −  are strong evidence, and 

10>  are very strong evidence. 

 

Comparisons of Models 

Another feature of the chi-square likelihood ratio test is that we also can compare 

nested models.  Nested models occur when the parameters of one model can be obtained 

by placing restrictions on a more general model that encompasses it.  Many of the models 

we describe have this feature.  For instance, we can test the traditional random versus 

fixed effects models by first estimating the random effects model where the latent time-

invariant variable is uncorrelated with the covariates and then estimating a separate 
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model identical to this except that it allows the latent time-invariant variable to correlate 

with the covariates.  These models are nested in that the random effects model is a 

restrictive form of the fixed effects model because the random effects model forces the 

correlations of the latent time-invariant variable to zero.  The chi-square and degrees of 

freedom of the fixed effects model are subtracted from the corresponding chi-square and 

degrees of freedom of the random effects model and the resulting test statistic has an 

asymptotic chi-square with degrees of freedom equal to the difference in degrees of 

freedom between these models.13  A nonsignificant chi-square is evidence in support of 

the random effects model whereas a significant chi-square supports the fixed effects 

model with covariates and latent time-invariant variable correlated. 

This same chi-square difference test allows us to test other nested structures such 

as the traditional fixed effect model where the coefficient for the same variable at 

different points of time is equal versus an identical model where these coefficients are 

allowed to differ over time.  Or we could test whether the error variance is equal or 

unequal over time.   

The fit indices described above are also a tool to compare different model 

structures.   We already have mentioned how the BIC with the lowest value indicates the 

best fit.  Differences in these other fit indices might also provide useful information.  

Though in our experience, the differences in these other fit indices might be more 

difficult to interpret than the BIC. 

 

Wage Penalty Empirical Example 

Previously, we introduced our empirical example, i.e. the wage penalty of 
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motherhood based on the study by Budig and England (2001) using data from the NLSY, 

and obtained estimates using the traditional fixed and random effects model framework 

estimated in Stata. In this section, we demonstrate how we can obtain the same 

coefficients as the traditional fixed and random effects models in the SEM framework; 

discuss overall fit measures from SEM, unavailable in traditional implementations, which 

suggest room for improvement of the traditional models; and provide estimates of the 

wage penalty of motherhood based upon alternative model specifications using the SEM 

approach that provide better empirical fit to the data. 

 

Random and fixed effects models as SEMs 

To estimate models in the SEM framework, we use data in wide format. We 

estimate all models using Mplus 4.0. We apply the direct MLE (Arbuckle 1996) that 

estimates the parameters with all of the nonmissing variable information, leaving us with 

a sample of 5,285 cases. Table 2 provides estimates for several model specifications in 

the SEM framework. Description of the variables and series of models was provided in 

section 2.5. The first two columns correspond to the standard random and fixed effects 

models, but estimated                 

[Table 2 About Here]  

in the SEM framework. Comparing the coefficients to those in Table 1, we see that the 

estimates are virtually identical. We would expect this since we have programmed the 

SEM formulations to match the traditional versions of these models.  Hence we can 

replicate the results of the traditional models using SEM.  However, the SEM results 

provide additional information by way of the measures of model fit.   
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The model fit statistics that we include are the Likelihood Ratio (LR) test statistic 

( mT ), degrees of freedom ( df ), IFI, RNI, RMSEA, and BIC. We described the 

calculation of these fit indices above.  In Table 2, the chi-square LR test statistic that 

compares the hypothesized fixed or random effects model to the saturated model leads to 

a highly statistically significant result, suggesting that these hypothesized models do not 

exactly reproduce the means and covariance matrix of the observed variables. With over 

5,000 cases in this sample, the LR chi-square test has considerable statistical power to 

detect even small departures of the model from the data.  In light of this statistical power, 

it is not surprising that the null hypotheses are rejected for these models ( 001.0<p ).   

The supplemental fit indices provide an additional means by which to assess 

model fit.  Both the random and fixed effects models for the model with no controls 

(Model 1) and the model that controls for marital status (Model 2) have values of IFI and 

RNI exceeding 0.90, a common cutoff value. However, values of RMSEA are often 

greater than 0.05 and values of BIC are positive, indicating problems with model fit for 

Models 1 and 2. In contrast, Model 3 that further controls for human capital variables 

have values of RNI and IFI close to 1 and values less than 0.05 of RMSEA and large 

negative values of BIC, all indicating good model fit.  Thus, the fit statistics from the 

SEM results support the choice of Model 3 over Model 1 or 2 whether we use the random 

or fixed effects versions. 

As explained previously, the random effects model is a restricted form of the 

fixed effects model where in the former, the latent time-invariant variables ( iη ) are 

uncorrelated with all other covariates.  Correlations are allowed in the fixed effects 

model.  Given this nesting, we can form a LR chi-square difference test to compare the 
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fixed and random effects model by subtracting mT  test statistics for the random vs. fixed 

effects model, taking a difference in their respective degrees of freedom, and comparing 

the results to a chi-square distribution.  A statistically significant chi-square is evidence 

that favors the fixed effects model while a nonsignificant chi-square favors the random 

effects model.  Performing these chi-square difference tests consistently leads to a 

statistically significant result lending support to the fixed effects versions of Models 1, 2, 

and 3 in Table 2.   These results are consistent with the Hausman test in favoring the 

fixed effects model.  However, the large sample size combined with the large degrees of 

freedom for these models complicates the picture in that the statistical power of all these 

tests is high and does not tell us the magnitude of the differences.  The RNI and IFI (i.e. 

the baseline fit indices) mostly differ in the third decimal place and values as close as 

these are generally treated as essentially equivalent.  The RMSEA has slightly larger 

differences in the pairwise comparisons with a tendency to favor the random effects 

models.  The greatest separation in the pairwise comparisons for Models 1, 2, and 3 occur 

for the BIC and the BIC favors the random effects versions of the models.   

These results are interesting in that they imply that the random and fixed effects 

models are closer in fit than the Hausman test or the LR chi-square tests suggested.  One 

reason is that the random effects models have considerably more degrees of freedom than 

the fixed effects model since the random effects model is forcing to zero all of the 

covariances of the latent time-invariant variable with the time-varying observed 

covariates.  The BIC gives considerable weight to the degrees of freedom of the model 

and the greater degrees of freedom contributes to making the BIC more favorable 

towards the random effects model.  A second related reason for the random effects 
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models appearing more competitive is that the magnitudes of the estimated covariances 

between the time-varying covariates and the latent variable are not always large in the 

fixed effects model.  Table 3 provides a sample of the estimated covariances between the 

full set of time-varying covariates and  iη   in the fixed effects version of Model 3.  We 

provide only the first and last years' covariances and correlations for simplicity, but note 

that we actually estimate all 12 years of covariances.  These results show that some of the 

correlations (covariances) 

[Table 3 About Here] 

of the latent time-invariant variable ( iη ) and the time-varying x s are not statistically 

significantly different from zero even though the significance tests are based on an N  

greater than 5000.  Interestingly, Number of children, the key explanatory variable, is 

essentially uncorrelated with iη  as is Divorced, and Part-time seniority.   The other 

statistically significant correlations are often modest in magnitude (e.g., Married and iη  

correlate less than 0.1).  Thus our results suggest a more nuanced picture of the 

association between iη  and the x s than suggested by the random or fixed effects model.  

The latent time-invariant variable has a statistically significant association with some x s, 

but not with others.  Even the statistically significant ones are modest in magnitude (e.g., 

2.0≤ ).  So the modest and sometimes not statistically significant covariances of iη  and 

the x s seems to be the reason that the random and fixed effects versions of the model 

have fits that are so close as gauged by our fit indices. 

As we have noted, these fit indices and the estimates of the covariances of the 

latent time-invariant variables and the observed time-varying covariates are not available 

with traditional random and fixed effects statistical routines; the Hausman test indicated, 
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as is often the case, that the fixed effects models are unambiguously superior to the 

random effects models.  Our results present a more nuanced view of their relative fit, 

while at the same time the LR chi-square tests suggests that neither model exactly fits the 

data. 

 

Alternative models as SEMs 

The results in the prior section provide clear evidence of the superiority of Model 

3 compared to Models 1 and 2.  While Model 3 fits the data fairly well, the LR chi-square 

test suggests the potential for improvement in fit. In this section, we explore other 

specifications of Model 3 to illustrate the SEM approach. As we discussed in section 

3.1.1, an alternative SEM specification is to allow the time-varying variables to have 

different effects at different times.  If we had specific hypotheses concerning which 

variables are the most likely to vary over time, then we could estimate Model 3 freeing 

only those coefficients and compare the fit of this new model to the fixed and random 

effects versions of the same model where the coefficients of the same variable are set 

equal over time.  The traditional fixed and random effects models would be nested in the 

models where the coefficients are free to vary over time.  A LR chi-square difference test 

along with a comparison of fit indices could be made to determine relative fit. 

In our case, we do not have specific hypotheses on which variable's coefficients 

might differ over time.  Therefore, we compare the traditional fixed and random effects 

versions of Model 3 to versions where all the coefficients of the time-varying variables 

are free to differ over time.  Table 4 contains the fit statistics.  Starting with the LR test 

we find a chi-square difference for the nested fixed effects models of 1014.21 (=7597.55-
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6583.34) with degrees of freedom ( df ) of 110 (=1386-1276) and a p-value <0.001 and 

for the random effects models we have a chi-square difference of 995.58 (=8118.40-

7122.82) with df of 110 (=1506-1396) and a p-value <0.001.  The chi-square difference 

tests are both statistically significant, supporting the model where at least some of the 

coefficients for the time-varying variables vary by wave.  However, considering the large 

N  and accompanying statistical power of the test it is worthwhile to examine the other 

fit statistics as well.  The IFI, RNI, and RMSEA suggest only slight differences between 

models that do and do not allow the coefficients to vary over time. . The BIC 

comparisons support the conclusion that we prefer the models that allow the coefficients 

to vary over time. The difference in BICs between the fixed effects models is 71.22 and 

between the random effects models is 52.59. Taken together the evidence tends to favor 

the models that allows the coefficients to vary over time. 

 [Table 4 About Here] 

We next allow the error variances to vary over time. The chi-square difference for 

the nested fixed effects models is 109.31 with 11 degrees of freedom and a p-value 

<0.001 and for the random effects models we have a chi-square difference of 108.23 with 

11 df and a p-value <0.001. The chi-square difference tests are again both statistically 

significant, supporting the model where the error variances are allowed to vary over time. 

The IFI, RNI, and RMSEA suggest only slight differences between models that do and do 

not allow the error variances to vary over time. The BIC comparisons support the 

conclusion that we prefer the models that allow the coefficients to vary over time. Once 

again, most of the fit indices tend to favor the models that allow the coefficients and error 

variances to vary over time. 
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Figure 5 plots the effects of number of children on log wages for Model 3, 

respectively. The x-axis indicates year and the y-axis indicates the child effect on 

women's wages. The y-axis is in reverse order such that higher values indicate a larger 

wage penalty for motherhood. We plot the results for several model specifications. To 

provide a benchmark comparison, we first plot the effect estimates for the conventional 

random and fixed effects models, i.e. those that constrain the child coefficients to be 

equal over time. We also plot the effect estimates for models that allow all coefficients 

and error variances to vary over time, i.e. those models that produce distinct estimates 

corresponding to each year.   In contrast to models that constrain coefficients to be equal 

over time, models that allow variation over time show smaller estimated effects of 

motherhood on wages and ones that oscillate over time.14 

 

Lagged endogenous variable models 

The last subsection suggested that the models that allow the coefficients and error 

variances to vary over time were the best fitting models.  However, even these models 

might be improved.  One possibility we have not considered is having the lagged value of 

wages as a determinant of current wages.  Substantively, including such an effect makes 

sense in that there is a certain inertia in wages where last year's wages are likely to be a 

good predictor of this year's.  Though raises typically occur, there is a high degree of 

stability in relative wages across individuals from year to year.  As we described in 

section 3.1.2, lagged endogenous variables for autoregressive effects are also 

straightforward to include.  Our appendix provides a more formal presentation of the 

SEM setup and assumptions for estimating such a model.  We lose one wave of data by 
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specifying such a model; thus, our hypothesized models will be compared to different 

saturated and baseline models than those above. Table 4 provides fit statistics for the best 

fitting versions of Model 3 from the last subsection, but adding a lagged endogenous 

variable.    

We estimate a series of specifications for the lagged endogenous variable models, 

parallel to those we estimate above, freeing constraints to determine whether our model 

fit improves by loosening these restrictions. First, we allow the lagged wage and all other 

coefficients to vary over time. Then we allow the error variances to be freed.  We plot the 

values for the specifications where the child coefficient is freed in Figure 5. As before, 

the effect of number of children on women's wages appears to oscillate over time. 

The overall fit statistics of the model in Table 4 enable us to compare the models.  

The large sample size and accompanying high statistical power lead all the LR chi-square 

tests to be statistically significant as expected.  However, the other fits statistics indicate 

that all the models with lagged endogenous variables fit very well.  For instance, the RNI 

and IFI are consistently close to 1.00 and the RMSEA is considerably lower than the 

usual cutoff of 0.05.  The BIC always takes large negative values supporting the selection 

of any of these models over the saturated model.   

The LR chi-square nested test of the fixed effects vs. the random effects model 

consistently finds a statistically significant difference in fit that favors the fixed effects 

versions.  But as we saw above in the models without the lagged endogenous variable, 

most of the covariances of the latent time-invariant variable with the observed covariates 

are substantively near zero.  This helps to explain why the BIC consistently chooses the 

random effects over the fixed effects models.  In fact, for these lagged endogenous 
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variable models the BIC most favors the random effects model with equality constraints 

on the coefficients and error variances.    

Taken together we reach the following conclusions on overall fit of the models.  

First, the lagged endogenous variable models have very good fit.15  Second, the IFI, RNI, 

and RMSEA do not reveal large differences among the different versions of these 

models.  Third, the BIC suggests that the most parsimonious of these models, that is, the 

random effects model with equality constraints, is the best.  Regardless of the model, 

these lagged endogenous variable models suggest a smaller penalty for motherhood's 

direct effect, particularly in later years, than that suggested by random and fixed effects 

models without lagged endogenous variables. However, given the lagged endogenous 

variable there are additional lagged effects of motherhood on wages.  For instance, the 

number of children in say, 1983, has a direct effect on wages in 1983, but it also has an 

indirect effect on wages in 1984 given the impact of 1983 wages on 1984 wages.  This 

distinction between direct, indirect, and total effects is well-known in the SEM literature 

(e.g., Sobel 1982; Bollen 1987) and most SEM software permits its exploration.   

 

Other alternative models 

The preceding results illustrate a few of the alternative fixed and random effects 

models that we can easily explore with a SEM approach, but there are more.  For 

instance, we could estimate models in which some of the time-varying covariates were 

allowed to correlate with the latent time-invariant covariate while others were not.  Or, 

we could test whether autoregressive disturbances were present.  Latent covariates to 

measure intelligence, motivation, or other potential determinants of wages would be easy 
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to include if we had the proper indicators.  Even without these extensions our SEM 

models found evidence that the standard assumptions of fixed coefficients, fixed error 

variances, and no lagged endogenous variables were not always supported when tested in 

our empirical example.   

 

CONCLUSION 

Classic random and fixed effects panel models are common models applied in 

ASR and elsewhere in sociology.  In this paper, we show that these models are a 

restrictive form of a SEM.  When placed in a SEM framework, a researcher does not need 

to maintain these constraints but can test them and only impose those supported by the 

data.  In addition, a wide variety of additional models and formulations are possible 

without much difficulty.  For instance, a researcher can test whether a covariate's impact 

on the repeated measure stays the same across all waves of data; test whether the error 

variances should be allowed to vary over time; include lagged covariates or lagged 

dependent variables; estimate the magnitude of the covariance of the latent time-invariant 

variables with the observed time-varying covariates; and include observed time-invariant 

variables in a fixed effects model either as uncorrelated with the latent time-invariant 

variable or as a determinant of the latent variable. For these and other models that we 

discussed, we have useful tests of model fit and fit indices that are not part of the classic 

random and fixed effects models. Indeed it would be interesting to know how many of 

the fixed or random effects models that have appeared in the literature would have 

adequate model fit if some of these tools were applied. We also have a likelihood ratio 

test of the fixed vs. random effects model and a variety of fit indices as alternatives to or 
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supplements to the Hausman Test. 

Our empirical example of the impact of the number of children on women's wages 

illustrated some of the advantages that flow by casting fixed and random effects panel 

models as SEMs.  For one thing, we had access to a more complete set of model fit 

statistics that revealed flaws in both the classic fixed and random effects models that were 

not evident in the usual approaches and the publications based on them.  Specifically, 

neither model fully reproduced the covariance matrix and means of the observed 

variables as they should if the models were correct.  Furthermore, we found evidence that 

the random effects models were more competitive than the Hausman test alone revealed.  

In fact, the Hausman test from past research unambiguously supported the fixed effects 

model over the random effects model.  The primary distinction between the fixed and 

random effects models is whether the covariates correlate with the latent time-invariant 

variable.  With the SEM approach we saw that the correlations of the covariates with the 

latent time invariant variable were close to zero-- information unavailable with usual 

methods.  Furthermore, the SEM approach suggested that the impact of number of 

children on wages was not the same across all years and that the unexplained variances 

were not constant over time in all models.  The classic fixed and random effects models 

assume constant effects regardless of the year of the panel data.    

A further departure from the published models for these data was that we looked 

at whether lagged wages impacted current wages net of the other determinants.   Given 

the degree to which current salary is closely tied to past salary, this is a substantively 

plausible effect and it was easy to explore in a SEM.  We found strong evidence that the 

lagged endogenous variable models were superior to the models without them.  A related 
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substantive point is that these models show the importance of prior wages on current 

wages and this implies that any variables that impact wages in a given year have an 

indirect effect on later years as well.  Thus, the number of children has direct as well as 

indirect effects on mothers' wages.   

The empirical example did not exhaust the types of models for panel data that 

could be applied using SEM. For instance, we explained a couple of ways in which we 

could include observed time-invariant variables into a fixed effects model.  Or, it would 

be straightforward to develop a model that permits the dependent variable to be latent 

with several indicators and to have a fixed or random effects-like model for it. We could 

allow for measurement error in the time-varying or time-invariant covariates and include 

them in the model. In addition, latent curve models or Autoregressive Latent Trajectory 

(ALT) models might be applied to panel data (Bollen and Curran, 2006). In brief, 

researchers can build a broader range of models than is commonly applied, some of 

which might better capture the theory that they wish to test. In addition, specialized 

software packages for panel data are not required since these models are estimable in 

standard SEM software. 

Although the SEM approach offers considerable flexibility, it as well as the 

classic fixed and random effects models do not adequately handle all situations that 

researchers might encounter. For instance, if the latent time-invariant variable has a 

different correlation with the covariates for different individuals, these models will not 

work. Similarly, the models we treat permit the covariate's effect on the repeated measure 

to differ over time, but the models we consider assume that these coefficients are constant 

over individuals. Some SEM publications have shown fixed and random effects models 
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for cross-sectional data with clusters such as families (e.g., Teachman et al. 2001) or for 

multilevel models (Bauer 2003).  Thus, although we have expanded on the usual fixed 

and random effects alternatives for analyzing panel data, we have not exhausted the 

possibilities. 

                                                 
1Lagged effects of covariates and the dependent variable could be included in the usual 

implementations of fixed and random effect models by treating them as additional 

covariates.  In practice, this is rarely done and only contemporaneous effects are 

considered.   

 

 

2Some prior work has drawn connections between SEM and these models.  An 

unpublished paper by Allison and Bollen (1997) and a SAS publication by Allison (2005) 

discuss SEM set-ups of the classic fixed and random effects model.  Teachman, Duncan, 

Yeung, and Levy (2001) look at fixed effect models in SEM, but concentrate their 

discussion and example on cross sectional data with clusters of families.   Finally, Ejrnaes 

and Holm (2006) look at different types of fixed effects estimators in panel data models, 

but do not cover random effects models, lagged dependent variable models, or some of 

the other variants that we include here.  However, they do look at models where the 

covariance of the time-varying covariates and the latent time invariant variable differs by 

cases, an issue that we do not consider. 
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3Though we use the term "individual" to refer to a case, the cases do not have to be 

individual people.  They could be groups, organizations, nations, etc. 

 

 

4The weight matrix has the following form: 
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.  An estimated version of Ω  is then used in a GLS procedure. 
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[ ]NddddD L321=  

where id  is a dummy variable indicating the i th case.  The test statistic asymptotically 

follows a chi-square distribution with one degree of freedom (see Greene 1997, Chapter 

14).   

 

 

6Budig and England's (2001) analysis resulted in a final sample of 5,287 women. 

 

 

7Budig and England also examined the wage penalty with three dichotomous measures 

indicating one child, two children, and three or more children. They find that the effects 

are monotonic, although not perfectly linear, and prefer the continuous indicator of 

number of children for all other analyses. 

 

 

8We thank Michelle Budig for sharing with us the experience and seniority variables 

from the Budig and England (2001) analysis. 

 

 

9These slight differences reflect the difficulty when attempting to replicate all the 

decisions made in variable construction of an analysis reported in a research article. 
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10A possible source of confusion is that path analysis is sometimes used to refer just to 

recursive or nonrecursive models of only observed variables where measurement error 

and latent variables are not considered.  This is an inaccurate usage of the term.  In fact, 

Sewall Wright the inventor of path analysis considered latent variables as do the more 

contemporary users of path analysis. 

 

 

11In this formulation the indirect effects of iz  would equal their direct effects on iη  since 

iη 's effect on ity  is 1.   

 

 

12MLEs are consistent, asymptotically unbiased, asymptotically normally distributed, 

asymptotically efficient among asymptotically unbiased estimators, and the inverse of the 

expected information matrix is available to estimate the asymptotic covariance matrix of 

the parameter estimator that we use for significance testing. 

 

 

13Strictly speaking, the least restrictive model should be a good fitting model for the chi 

square distribution of the differences to hold. 

 

 

14Freeing of the child coefficient for Models 1 and 2 demonstrate an upward trend over 

time in the wage penalty for motherhood that levels off in 1988 when women are 
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between 23 and 31 years old, suggesting a form of cumulative disadvantage associated 

with motherhood on women's wages. When we control for women's human capital in 

Model 3, the penalty trend is no longer steeply increasing, suggesting that the increasing 

wage penalty for motherhood over time is at least partly a function of the differential 

human capital reflective of the number of children women bear. 

 

 

15This statement recognizes the role that the large sample size plays in elevating 

statistical power for the LR chi-square tests and hence downplays the statistical 

significance of these tests.  However, the chi-square tests mean that these is still room for 

improvement despite the favorable results with all other fit indices for these models. 
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TABLES 

Table 1. Coefficients for the Effect of Total Number of 
Children (Continuous Variable) on Women's Log 
Hourly Wage (Stata): NLSY 1982 to 1993 
   

Control Variables in 
Model 

Random 
Effects 
Model 

Fixed 
Effects 
Model 

       
Model 1: Gross (no 
controls) 

-0.082 *** -0.068 ***
(0.003)   (0.004)  

        
Model 2: Marital status -0.089 *** -0.072 ***

(0.003)   (0.004)  
        
Model 3: Marital status 
and human capital 
variables 

-0.037 *** -0.043 ***
(0.003)   (0.004)  

      
   
Notes: Numbers in parentheses are standard errors. 
Measures of human capital include education, full-time 
seniority, part-time seniority, full-time experience, part-
time experience, number of breaks in employment, and 
whether currently enrolled in school.  Number of 
observations = 41757; Number of groups = 5285; 
*p<.05     **p<.01     ***p<.001  (two-tailed tests) 
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Table 2. SEM Coefficients for the Effect of Total Number of 
Children (Continuous Variable, Constrained to be Equal) on 
Women's Log Hourly Wage (Mplus): NLSY 1982 to 1993 
   
Control Variables in 
Model 

Random Effects 
Model 

Fixed Effects 
Model 

       
Model 1: Gross (no 
controls) 

-0.082 *** -0.068 *** 
(0.003)  (0.004)  

     
Tm (LR chi-square) 6721.31  6647.85  

df 219  207  
IFI 0.9316  0.9323  
RNI 0.9316  0.9322  

RMSEA 0.0750  0.0767  
BIC 4843.91  4873.32  

        
Model 2: Marital status -0.089 *** -0.072 *** 

(0.003)   (0.004)  
     

Tm (LR chi-square) 7055.17  6903.80  
df 505  469  
IFI 0.9669  0.9675  
RNI 0.9668  0.9673  

RMSEA 0.0495  0.0510  
BIC 2725.99  2883.24  

        
Model 3: Marital status 
and human capital 
variables 

-0.037  *** -0.042 *** 
(0.003)   (0.004)  

     
     

Tm (LR chi-square) 8118.40  7597.55  
df 1506  1386  
IFI 0.9922  0.9927  
RNI 0.9921  0.9926  

RMSEA 0.0288  0.0291  
BIC -4791.98  -4284.11  

        

Notes: Numbers in parentheses are standard errors. Measures of 
human capital include education, full-time seniority, part-time 
seniority, full-time experience, part-time experience, number of 
breaks in employment, and whether currently enrolled in school.  
Number of observations = 41757; Number of groups = 5285; 
*p<.05     **p<.01     ***p<.001  (two-tailed tests)  
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Table 3. SEM Coefficients for Fixed Effects Model 3 
     

Control Variables 

1982 
Covariance 
with η 

1982 
Correlation 
with η …

1993 
Covariance 
with η 

1993 
Correlation 
with η 

         
Number of children 0.002  0.011   0.001  0.003
 (0.004)    (0.007)  
Married 0.002  0.017   0.007 ** 0.052
 (0.002)    (0.002)  
Divorced 0.002  0.031   -0.002  -0.018
 (0.001)    (0.002)  
Educational Attainment* 0.030 * 0.062   0.038 * 0.061
 (0.014)    (0.019)  
Currently enrolled in 
school* 0.001  0.008   0.002 * 0.035
 (0.002)    (0.001)  
Full-time seniority* 0.000 *** 0.000   0.140 *** 0.141
 (0.000)    (0.017)  
Part-time seniority* 0.000  0.000   0.011  0.029
 (0.000)    (0.007)  
Full-time experience* 0.040 *** 0.113   0.218 *** 0.202
 (0.006)    (0.022)  
Part-time experience 0.016 * 0.053   -0.038 * -0.051
 (0.006)    (0.015)  
Num. of employment breaks 0.027 *** 0.092   -0.093 *** -0.148
 (0.006)    (0.013)  
             
     
Notes: Numbers in parentheses are standard errors.  
*p<.05     **p<.01     ***p<.001  (two-tailed tests)  
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Table 4. Model Fit Statistics (N=5285)            
               

Control 
Variables 
in Model Model Specification Log Lik. 

Tm      
(LR 
chi-

square) df IFI RNI RMSEA BIC 
         
 Saturated for BIC -186947.29  0     
 Baseline model for CFI, IFI -611001.12 848108 8646     

Model 3: 
Marital 
status and 
human 
capital 
variables 

Random Effects -191006.49 8118.40 1506 0.9922 0.9921 0.0288 
-

4791.98 

Fixed Effects -190746.07 7597.55 1386 0.9927 0.9926 0.0291 
-

4284.11 

Random Effects, All Coef. Freed -190508.70 7122.82 1396 0.9932 0.9932 0.0279 
-

4844.57 

Fixed Effects, All Coef. Freed -190238.97 6583.34 1276 0.9937 0.9937 0.0281 
-

4355.33 

 
Random Effects, All Coef. & Error Var. 
Freed -190454.59 7014.59 1385 0.9934 0.9933 0.0277 

-
4858.50 

 Fixed Effects, All Coef. & Error Var. Freed -190184.31 6474.03 1265 0.9938 0.9938 0.0279 
-

4370.35 
         

 
Saturated for BIC, Lagged End. Var. 
Models -204457.31  0     

 
Baseline model for CFI, IFI, Lagged End. 
Var. Models -599267.35 789620 7381     

 RE, Lagged End. Var. -206204.46 3494.31 1273 0.9972 0.9972 0.0182 
-

7418.65 

 FE, Lagged End. Var. -205918.25 2921.89 1163 0.9978 0.9978 0.0169 
-

7048.07 
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 RE, Lagged End. Var., All Coef. Freed -205905.22 2895.82 1163 0.9978 0.9978 0.0168 
-

7074.15 

 FE, Lagged End. Var., All Coef. Freed -205633.45 2352.29 1053 0.9984 0.9983 0.0153 
-

6674.69 

 
RE, Lagged End. Var. Model, All Coef. & 
Error Freed -205872.79 2830.97 1153 0.9979 0.9979 0.0166 

-
7053.27 

 
FE, Lagged End. Var. Model, All Coef. & 
Error Freed -205601.95 2289.29 1043 0.9984 0.9984 0.0150 

-
6651.96 
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FIGURES 

Figure 1. Classic Random Effects Model in Path Diagram
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Figure 2. Classic Fixed Effects Model in Path Diagram
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Figure 3. Fixed Effects Model with Lagged Dependent 
Variables
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Figure 4. Fixed Effects Model with Observed Influencing Latent 
Time Invariant variable
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Figure 5. SEM Coefficients for the Effect of Total Number of Children on Women's Log Hourly Wage: 
Model 3, Marital Status and Human Capital Variables
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APPENDIX 

 

Fixed and Random Effects Models as Structural Equation Models 

 

Classic Fixed and Random Effects Models 

We represent the classic fixed and random effects models in the following matrix 

equation: 

 iii εΓα ++= wy  (A1) 
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The itx  vector contains the values of the time varying covariates for the i th case at the 

t th time, iz  is the vector of observed time-invariant variables for the i th case, and iη  is 

the latent time-invariant variable for the i th case.  We assume that the mean of the 

disturbance is zero [ 0=)( iE ε  for all i ], that they are not autorcorrelated over 
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cases[ 0=′ ),( jiCOV εε  for ji ≠ ], and that the covariance of the disturbance with the 

covariates in iw  is zero [ 0w =′ ),( jiCOV ε  for all ji,  ].   

In SEMs the vector of means (μ ) and the covariance matrix (Σ ) of the observed 

variables are functions of the parameters of the researcher's model.  If we place all model 

parameters (coefficients, intercepts, variances, covariances) in a vector  θ , then these 

implied functions are the model implied covariance matrix ( )(θΣ ) and implied mean 

vector [ )(θμ ].  When the model is valid, then  

 )(&)(: θΣΣθμμ ==oH  (A3) 

That is, we will exactly reproduce the means and covariance matrix of the observed 

variables by knowing the model parameter values and substituting them into the implied 

mean vector and implied covariance matrix.  For equation (A1), the implied mean vector 

[ )(θμ ] is 

 ⎥
⎦

⎤
⎢
⎣

⎡ +
=

w

w

μ
Γμα

θμ )(  (A4) 

and the implied covariance matrix [ )(θΣ ] is 

 ⎥
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⎡ +
=

′′

wwww

wwww

ΣΓΣ
ΓΣΣΓΓΣ

θΣ εε)(  (A5) 

where wwΣ  is the covariance matrix of the covariates in w  and εεΣ  is the covariance 

matrix of the disturbances (ε ). 

In the classic fixed effects model, we would drop zi  from wi  and the 

corresponding coefficients from Γ , set 
TTyyy xxx BBB === L

2211
 , and make εεΣ  a 

diagonal matrix with all elements of the main diagonal equal.  The wwΣ  covariance 
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matrix allows all covariates to correlate, including the latent time-invariant variable.  For 

the classic random effects model, we can return iz  to iw , but now we must constrain 

wwΣ so that all covariances of η  with tx  and z are zero and we maintain the equality 

constraints on the coefficients so that 
TTyyy xxx BBB === L

2211
 and 

zzz BBB
Tyyy === L

21
.  As explained in the text, we can easily test these restrictions in 

SEMs. 

The Maximum Likelihood Estimator (MLE) is the most widely used estimator in 

SEM software.  The fitting function that incorporates the MLE is 

 ))()(())((])([ln)(ln 11 θμθΣθμ+−θΣθΣ −′−+−= −− zzSS ptrFML  (A6) 

where S  is the sample covariance matrix, z  is the vector of the sample means of the 

observed variables, p  is the number of observed variables, ln  is the natural log, ·  is the 

determinant, and tr is the trace of a matrix. The MLE estimator, θ̂ , is chosen so as to 

minimize MLF .  Like all MLEs, θ̂ , has several desirable properties.  It is consistent, 

asymptotically unbiased, asymptotically efficient, asymptotically normally distributed, 

and the asymptotic covariance matrix of θ̂  is the inverse of the expected information 

matrix. 

The MLE estimator as implemented in MLF  leads to a consistent estimator of all 

intercepts, means, coefficients, variances, and covariances in the model under a broad 

range of conditions.  This means that in larger samples, the estimator will converge on 

the true parameters for valid models.  However, if we wish to develop appropriate 

significance tests, then we need to make assumptions about the distributions of the 

observed variables.  The classic assumption is that the observed variables come from a 
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multivariate normal distribution.  A slightly less restrictive distributional assumption that 

maintains the properties of the MLE and its significance tests is that the observed 

variables come from a multivariate distribution with no excess multivariate kurtosis 

(Browne 1984).  Multivariate skewness is permitted as long as the multivariate kurtosis 

does not differ from that of a normal distribution.    

Fortunately, even when there is excess multivariate kurtosis there are a variety of 

alternative ways to obtain asymptotically accurate signficance tests including 

bootstrapping techniques (e.g., Bollen and Stine 1990, 1993), corrected standard errors 

and chi-squares (e.g., Satorra and Bentler, 1994), or arbitrary distribution estimators (e.g., 

Browne 1984).  See Bollen and Curran (2006:55-57) for further discussion and 

references.  These options provide a broader range of choices than is true in the usual 

implementation of the classic fixed and random effects models. 

 

Dynamic Fixed and Random Effects Models 

In the econometric literature, "dynamic" models refers to fixed and random 

effects models with lagged dependent variables included among the covariates.  In the 

usual implementations, the lagged dependent variable model creates considerable 

difficulties and are the source of much discussion (see, e.g., Hsiao 2003, Ch.4).  

Fortunately, these models are relatively straightforward in the SEM approach.  A 

modification of equation (A1)  permits lagged endogenous variables, 

 iiii εΓα +++= wRyy  (A7) 

where because of using a lagged dependent variable we need to redefine vectors to take 

account of treating the first time wave variable, 1iy , as predetermined and included 
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among the other covariates and the presence of lagged y  influences, so that 
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In this model, 1iy  is predetermined and uncorrelated with iε  as are the other covariates.  

However, there is a correlation between iTi yy K2  and at least some elements of iε  (e.g., 

2iy  correlates with 2iε ) so we need to consider all but the first wave ( 1iy ) as endogenous.   

For this model, the implied mean and covariance matrices become, 
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 (A9) 

and the implied covariance matrix [ )(θΣ ] is 
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Fortunately, we can continue to use the ML fitting function in equation (Fml) and the 

resulting estimator maintains the properties of an MLE under the precedingly described 

distributional assumptions and the corrected test statistics are also available when needed 

(see above). 

 

 

 


