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Introduction 
How innovation spreads through social systems is one of the most fascinating and 

distinctly social issues in sociology. States adopt policies, firms enter markets and adopt 
management practices, and individual people learn news, change their beliefs, and begin 
to practice new behaviors. Analyzing the rate at which ideas, behaviors, or institutional 
structures spread across the actors in a social system (diffusion curve analysis) is a 
particularly powerful approach for exploring these issues. By abstracting from the actor’s 
adoption, diffusion curve analysis shows cascades of behavior where actors are sensitive 
to the number of peers who have adopted the innovation. For instance, many systems 
have a “tipping point” or a critical mass at which its rate of adoption drastically 
accelerates (Schelling 1971, Gladwell 2000, Rogers 2003). In other cases however, actors 
derive neither externalities nor information from one another’s behavior but are instead 
motivated by some exogenous force. Analysis of the relationship between the slope and 
height of the cumulative adoption distribution can help distinguish between these two 
types of models. 

In nearly any aspect of society one can find individual or corporate actors 
adopting not only one innovation but multiple innovations. Often we are interested in 
innovations not for themselves but because they are indicative of some larger latent trend. 
States do not adopt neo-liberalism, but deregulate particular industries in particular ways 
(Henisz et. al. 2005). Banks do not practice market entry; they enter specific financial 
markets (Haveman 1993). Engineers do not adopt information technology; they begin 
using calculators or computers (Randles 1983). Hence, diffusion curve analyses that 
aggregate information across several innovations are particularly useful. These analyses 
allow one to distinguish the unique traits of a specific innovation from common 
properties of an entire class of innovations. For example, one can distinguish what is 
characteristic of a broad trend and what is merely particular to the depoliticization of 
electrical utilities, entry to the consumer non-mortgage loan market, or the use of second 
generation calculators.  

Furthermore, one can identify contingencies in diffusion patterns. The first study 
to formally aggregate several innovations showed that the rate at which industrial firms 
adopt new technologies is a function of the efficiency of those technologies (Mansfield 
1961). Likewise, the rate at which municipalities adopt civil service reform is contingent 
on whether the state capitol has mandated them to do so (Tolbert and Zucker 1983).  

Existing techniques for aggregating innovations suffer two drawbacks. First, they 
are cumbersome and inefficient. This inefficiency not only requires larger sample sizes, 
but introduces a “success bias” since only innovations that diffuse widely can be 
analyzed (Rogers 2003). Second, many parameters cannot be tested with them. For 
instance, current methods cannot easily estimate period effects or the outsize influence of 
particularly powerful actors. In this paper we introduce a new method, multilevel 
diffusion curves, which addresses these problems. We demonstrate its benefits by 
comparing its analyses with a traditional method on a data set estimating payola in the 
music industry. 

 
An Example: Payola in the music industry 

Organizations facing uncertainty strive to stabilize their environment to mitigate 
the potentially adverse effects of disruptive changes (Thompson 1967, Pfeffer and 
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Salancik 1978). In culture industries, firms often raise the exposure of their products by 
manipulating the third-party endorsements of gatekeepers in ancillary industries (Hirsch 
1972). For recorded music, radio is the primary way to introduce products to the general 
public. “There is no better guarantor of a band’s success than a hit single on the radio 
luring listeners into record stores to buy the album” (Slichter 2004, p. 76).  

Record labels therefore go to great lengths (legal and illegal) to encourage radio 
stations to play their artists' songs (Coase 1979, Dannen 1990, Caves 2000, Slichter 
2004). Record labels engage in a broad family of practices in which they give valuable 
commodities to radio stations because the latter hold something of tremendous value to 
the former and can therefore extract rents (Coase 1979). Legally, a record company can 
provide radio stations with a sample copy of a record, a press packet, and contact men 
who visit the stations to talk up the record. In contrast, illegal influence, or “payola,” is 
giving cash or something of value in exchange for a radio station playing a particular 
song without disclosing the transaction on the air. Even without an explicit quid quo pro, 
record label gifts and services to radio stations are legally ambiguous. Another gray area 
is the common practice of labels contracting with “independent radio promoters” (IRP) or 
“indies” to promote a record. Indies are so named because they are not directly employed 
by the record company but are independent consultants. They commonly pay radio 
stations on a retainer basis for the privilege of advising them about their playlists, and this 
access in turn makes their services valuable to record labels (Dannen 1990, Slichter 
2004). Although the IRP does not usually pay the station for each song, presumably a 
station that consistently rejected the indie’s suggestions would lose its retainer fees and 
thus these dealings form a sort of embedded payola.  

Although the practice is arguably much older, payola first became a political issue 
in the United States in 1959 (Coase 1979). In the House of Representatives, the “Harris 
Committee” on Legislative Oversight held hearings on how quiz show producers had 
rigged their programs by coaching Charles Van Doren and other contestants. In the 
course of this investigation the committee uncovered evidence that record labels had 
bribed disk jockeys to play their records, and that this practice had facilitated the rise of 
rock and roll. The ensuing controversy implicated two influential rock-and-roll disk 
jockeys, Alan Freed and Dick Clark, destroying the career of the former. In 1960, 
Congress closed a loophole that technically allowed firms to legally bribe agents of a 
broadcaster (although not the broadcaster itself). On their side, radio stations began 
restricting the autonomy of disk jockeys and placing all creative control under 
“programmers.” 

However these legal changes and modified business practices failed to eradicate 
payola. Like clockwork, it was discovered anew every fifteen years.1 In 1974, the federal 
government found evidence that Clive Davis and David Wynshaw used independent 
radio promoters to give disk jockeys and programmers a quarter of a million dollars in 
cash and narcotics. In 1989, federal prosecutors indicted independent radio promoters 
such as Joe Isgro (a member of the Gambino crime syndicate) for payola (Dannen 1990). 
In 2004, Eliot Spitzer (now governor and then Attorney General of New York State) 
subpoenaed evidence that all four of the major record companies (EMI, Sony, Universal, 

                                                 
1 This pattern is revealed by querying “payola” in the New York Times file in Proquest and Lexis-Nexis. In 
most years only a few stories contain the word. At least ten payola stories were printed in each of the 
following years: 1960, 1961, 1973, 1990, 2005, and 2006. 
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and Warner Brothers) and at least two major radio companies (Entercom and CBS) had 
systematically engaged in payola. Using this evidence, Spitzer extracted consent decrees 
from the companies that established de facto regulatory regimes. Specifically, the firms 
agreed to severely restrict their business practices and to make multi-million dollar 
charitable donations.  

The Spitzer investigation not only produced consent decrees, but also a large set 
of subpoenaed files detailing the songs targeted by the payola. These files included 
emails and other documents in which record company personnel discussed amongst 
themselves or with radio personnel, quid quo pro transactions of valuable commodities in 
exchange for airplay of songs. Examples include a radio station programmer 
acknowledging receipt of an in-kind bribe or a record company official filing invoices for 
the same. In the modal case, the bribe was an in-kind gift worth a few hundred dollars to 
be given to a contest winner in exchange for which the radio station would play a specific 
artist. These files form the basis for this paper’s data collection frame. 

We identified all songs mentioned in the EMI, Sony, Universal, and Warner 
settlements and queried them in Mediabase, a commercial radio airplay dataset. If an 
artist, but no specific song, was mentioned then we recorded whatever song was in the 
Mediabase airplay charts on the date of the email.2  Ultimately this produced a set of 150 
songs implicated by Spitzer in payola, or simply “Spitzer songs.” We also identified a 
panel of control songs. To choose comparable songs we first noted on which Mediabase 
chart and on which date each payola song peaked. We then identified the two songs 
ranked above and the two songs ranked below each Spitzer song. This produced 384 
control songs.3 See appendix A for summary statistics. 

For each of the Spitzer and control songs, we used Mediabase to record the date 
on which each station first played the song, or what in radio is known as an “add.” These 
data allow us to construct a cumulative adoption function for each song.  

This study has methodological, theoretical, and practical implications. 
Methodologically, this study introduces a more powerful, more precise, and more 
efficient estimation technique: multi-level diffusion curves (MDC). MDC can model 
explanatory variables at all levels while assessing the diffusion of multiple innovations 
simultaneously. Through a synthesis of diffusion of innovation, production of culture, 
and contingency theory, this study shows how ”internal” and “external” diffusion 
processes reflect 3rd party interventions that use monetary incentives (payola) to increase 
adoption of innovations (songs). At the practical level, we develop a technique for 
uncovering such illegitimate practices. Using these documents, we show that our new 
method, multilevel diffusion curves, can uncover payola without relying on the 
extraordinary (but intermittent) powers of a Congressional committee or prosecutor to 
subpoena documents and testimony. 

 
Internal- vs. external-influences on diffusion 

A wide literature across the social sciences examines how innovations diffuse 
among actors in a social system. In the case of radio, the actors are radio stations and the 

                                                 
2 To the extent that this introduces measurement error it will introduce a conservative bias to our estimates. 
3 Theoretically, there could have been as many as 600 control songs. However many songs identified in the 
two up, two down, frame were either themselves Spitzer songs or were identified as controls for several 
songs.  
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innovations are pop songs. Radio is an ideal field for exploring diffusion because of its 
especially high level of novelty compared to other fields. The typical radio station adds 
one to five songs to its playlist every week.4 In other cases, firms might adopt a specific 
business practice, peasants might adopt a public health measure, or governments might 
adopt a specific policy (Rogers 2003). In general, diffusion processes can be categorized 
as internal or external influence (Mahajan and Peterson 1985, Valente 1993). 

Many studies have shown that actors adopt innovations after seeing peers doing 
the same (internal-influence). A seminal study interviewed hundreds of Iowa farmers to 
see when and why they first began planting “hybrid corn,” a high-yield variety of maize 
(Ryan and Gross 1943). Although most of the farmers first learned of the corn from 
sources outside the community such as mass media or salesmen, they often actually 
planted it only after a neighbor told them of their satisfactory experience with the crop. 
As more farmers tried the corn, more neighbors could learn about its virtues. When only 
one farmer used the corn he could describe it to only a handful of neighbors. After the 
next harvest however, the neighbor farmers who used the corn could describe it to still 
more farmers. Thus in this manner of diffusion, every new convert becomes an 
evangelist. The adoption of the corn was slow at first but then spread rapidly. When 
many farmers planted the corn, they became less likely to meet a neighbor who had not 
tried the corn, and the innovation begins to saturate the system. As this occurs, the risk 
set of persons yet to adopt the innovation shrinks and the rate of adoption declines. 
Overall, the hybrid corn adoption rate was slow initially (1924-1933), increased rapidly 
(1934-1939), and finally tapered off (after 1939).  
  Mathematically, the instantaneous rate of adoption is a function of the number of 
prior adopters times the remaining risk pool, in which t is time, Nt is adopters at t, N is the 
maximum number of adopters, and b is the coefficient of adoption. 

 
(dNt/dt) = bNt (N - Nt)     (1)  
 
Integrating this function produces a cumulative adoption function known as an “s-curve” 
or “logistic curve” where N0 indicates the value of N at t0. 
 
Nt = N /[1+ (exp[-bN(t-t0)]) (N – N0) /N0]  (2) 
 

                                                 
4 This estimate is based on generating Mediabase 7-day station playlists for a dozen radio stations in an 
arbitrary week. It reflects the number of songs on each station’s playlist with a value of “first played” 
occurring within the current week.  
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Figure 1: Internal-influence 
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This curve is characterized by slow initial growth, then a period of rapid growth, and then 
a final period of slow growth. Contagion and threshold models have different 
mechanisms for explaining exactly why each actor adopts the innovation at various times, 
Nevertheless, under a wide range of assumptions, both models predict that the adoption 
rate of an innovation is a function of the prior number of adopters, and thus the 
cumulative adoption function will follow the s-shaped pattern. Most common is a 
“contagion” or “meme” model in which adopters directly evangelize to future potential 
adopters (Tarde 1903, Ryan and Gross 1943, Dawkins 1976). “Information cascade” or 
“herd behavior” models assume that the actor is using peer adoption of the innovation as 
a measure of its quality (Banerjee 1992, Bikhchandani et. al. 1992). Network externality 
models assume that the more prior adopters an innovation has, the more useful it 
becomes and therefore the faster the rate of growth in the future (Katz and Shapiro 1985, 
Adler 1985). Both cascade and externality models are special cases of “threshold models” 
in which actors have different thresholds or reservation prices for how popular an 
innovation must become before they adopt it (Grannovetter 1978). If actors have an 
underlying normal distribution of thresholds, then such a process will produce an s-
shaped diffusion curve. In fact, the overwhelming consensus of the theoretical and 
empirical literature is that endogenous diffusion processes will almost always produce an 
s-shaped diffusion curve (Mahajan and Peterson 1985, Rogers 2003). 

 Internal-influence in radio can occur through both direct peer-to-peer influence 
and pop chart mediation.  In an ongoing study, most Contemporary Hits Radio (a.k.a. 
“Top 40”) programmers report that they are aware of the programming decisions of about 
ten of their peers, either by having regular personal conversations with them, by listening 
to their stations, or by reading about these peer stations in trades or databases. In fact, 
several report weekly conference calls in which they trade information with several other 
programmers at once. Internal-influence is also mediated through the charts published in 
Radio & Records magazine, an industry trade journal. These charts summarize how 
popular different songs are in various genres of radio. During the period of this study, 
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R&R charts were based on the same Mediabase data used in this study.5 Thus a single 
piece of information, the R&R chart, efficiently summarizes field trends, or as a 
programmer expressed in an interview “The chart is God!” Another programmer 
described the core of his job as “pounding through R&R trying to figure out what songs 
looked like they are on their way up” (Lynch and Gillispie 1998, p. 101).  

Programmers are attentive to the behavior of their rivals to obtain information and 
to exploit public's acclimation to novelty via rival's airplay. Programmers assume that the 
consensus carries meaningful information about quality that their own taste alone is 
unable to divine (herd function, Banerjee 1992, Bikhchandani et. al. 1992). A country 
programmer claims that “If I hear something that blows me away I’ll play it. But most of 
the time I wait for other stations that I trust and let them break things. Then I get on it 
later just to make sure I’m not making as many mistakes as other stations do. It’s a safer 
way to go” (Lynch and Gillispie 1998, p. 122). There is also an important issue of 
externalities. Programmers believe that audiences are hostile to songs that they have 
never heard before. “A lot of times [disk jockeys] will come in and say ‘I’m so sick of 
this song!’ And I’ll say ‘Well that’s about the time your listeners are starting to get into 
it.’ … [Y]ou have to have at least 100 spins on a record before your audience is going to 
have heard it enough times to really decide whether they like it or not” (Lynch and 
Gillispie 1998, p. 123).Therefore, programmers have an incentive to play a song after 
listeners have acquired a comfortable familiarity with it from one’s rivals (free riding on 
rivals). Similarly, the R&R chart is a good indication of whether a song’s uncomfortable 
novelty has been mitigated by repetition. In short, internal-influence is likely the default 
pattern in radio programming. 

In contrast, external-influence processes yield a different diffusion pattern. Under 
external-influence, actors in a system look not to each other but to something outside of 
their group in considering whether to adopt. Civil rights enforcement in American 
industry illustrates this process clearly (Dobbin and Sutton 1998). In the mid-1960s, most 
American employers understood both their moral obligations and the 1964 Civil Rights 
Act as eschewing the most egregiously discriminatory practices, but not affirmative 
action and not eliminating subtle barriers to minority employment. Beginning in the late 
1960s, and especially in 1971, the federal government dramatically expanded the scope 
and enforcement of civil rights law, and firms responded to the external-influence of 
federal regulations. The number of firms with an Equal Employment Opportunity/ 
Affirmative Action (EEO/AA) compliance officer was very small in 1967, rose sharply 
after the policy shocks in 1968 and 1972, and thereafter rose at a declining rate (Dobbin 
and Sutton 1998).  

Unlike the slow growth-fast growth-slow growth pattern of internal-influence 
(e.g., hybrid corn adoption, Ryan and Gross 1943), external-influence (EEO/AA officers) 
has a fast growth-slow growth pattern. Mathematically, the instantaneous rate of adoption 
is a constant function times the remaining risk pool where a is the coefficient of adoption: 
 
(dNt/dt) = a (N - Nt)     (3)  
 

                                                 
5 In August of 2006, Radio & Records was purchased by Nielsen, which began using its own Broadcast 
Data Systems (BDS) data as the basis for R&R charts. As the methodologies and scope of Mediabase and 
BDS are very similar, this has produced no meaningful change in the R&R chart. 



 8

Integrating this function produces a negative exponential, cumulative adoption function.  
 
Nt = N (1- e-at)      (4) 
 
Figure 2: External-Influence 

Time (t)

C
um

ul
at

iv
e 

A
do

pt
io

n 
(N

t)

 
When individual people are the unit of analysis, policy mandates and mass media 
campaigns might be important external-influences.  

External-influence can also be a factor in radio programming. The most important 
exogenous impact on radio comes from the promotion efforts of record labels. These 
efforts can be quite substantial. For instance, in 1998, MCA spent $700,000 dollars 
promoting the song “Closing Time” by the band Semisonic (Slichter 2004). About half of 
this money went for legitimate expenses like filming a music video and sending the band 
to live radio appearances but the rest was simply payola. Such promotion efforts are not a 
function of prior adoptions, nor do they otherwise build over time. Rather, promotion 
efforts are aimed at getting a wave of adds. Slichter (2004) even claims that his 
promotional campaign delayed some adds so as to make them closer to the targeted add 
date. Thus payola is not only conceptually external to radio but should also have a pattern 
revealing it. 

Internal-influence and external-influence can occur in the same system, as in the 
case of small-town physicians first prescribing the antibiotic tetracycline (Coleman et. al. 
1966). Dividing the physicians into those who read few vs. many medical journals 
revealed distinct diffusion patterns. Heavy journal-readers adopted tetracycline rapidly 
after the drug’s introduction and slowly afterwards. Among light journal-readers, 
adoption was slow, then fast, then slow again. Thus physicians who were exposed to a 
mass media influence showed an external-influence pattern whereas physicians without 
such exposure showed an internal-influence pattern (Valente 1993). Similar 
contingencies occur when municipalities adopted civil service reform to reduce patronage 
(Tolbert and Zucker 1983). If the state government mandated adoption, the municipalities 
responded to the dictates of the state capitol and showed an external-influence pattern. 
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Without a state mandate, the municipalities imitated one another, showing an internal-
influence adoption pattern.   

As the presence of external vs. internal-influence varies between studies, and 
occasionally even within them, Mahajan and Peterson (1985) modeled both external-
influence (“a”) and internal-influence (“b”) within a “mixed-influence” model: 
 
(dNt/dt) = (a + bNt) (N - Nt)    (5)  
 
Integration yields the following formula. 
 
Nt={N-[a(N-N0)/(a+bN0)]exp[-(a+bN)(t-t0)]}/(1+b[N-N0]/(a+bN0)exp[-(a+bN)(t-t0)]) (6) 
 
The shape of the resulting curve depends on the relative strength of the two parameters. 
The relative size of the parameters a and b indicates the degree to which a diffusion curve 
approximates the two ideal types. For instance, the model of EEO/AA officers would 
have a relatively large a (external-influence), while the model of hybrid-corn adoption 
would have a relatively large b (internal-influence).  
 This model can be extended to multiple innovations to identify common patterns 
among them. Such an approach not only allows one to pool information across 
innovations, but to treat the parameters themselves as objects of analysis. For instance, 
Mansfield (1961) interpreted the rate at which large firms adopted twelve different new 
technologies. He first regressed the shape of each innovation’s curve to solve for b. Then, 
he treated these twelve values of b as a new dataset which he in turn regressed on the 
cost-effectiveness of the technologies.6 As regression coefficients have standard errors 
however, using regression coefficients as outcome variables is statistically inefficient 
(Kay 1993). Moreover, this method does not model the effect of time-level variables on 
internal-influence, external-influence, or total potential users. Likewise, it does not allow 
interaction effects between time level variables and song level variables. 
 We further extend Mansfield's (1961) model by changing the two-stage macro 
analysis (Mansfield 1961, Mahajan and Peterson 1985) to a multilevel diffusion curve 
(MDC) analysis that is both efficient and flexible. A brief overview of the older 
technique serves as a useful preface. As radio station programmers often plan their 
playlist one week at a time (Lynch and Gillispie 1998), we examine the weekly diffusion 
of songs.  Hence, we incorporate discrete time periods of equal length to equation 5, 
resulting in the following equation: 
 
Nt+1 – Nt = aN + (bN – a)Nt – bNt

 2   (7)  
 
Note that this is a quadratic equation of Nt.  
 
Nt+1 – Nt = A + BNt + CNt

 2    (8) 
 
We then solve for the parameters of external-influence (a), internal-influence (b), and 
estimated total potential users (N). 
                                                 
6 Note that Mansfield (1961) refers to b as φ (phi). Our nomenclature is adapted from Mahajan and 
Peterson (1985) and Valente (1993). 
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b = –C        (9) 
 

N = [–B ± (B2–4AC)0.5 ] / 2C    (10) 
 
a = A1 / N       (11) 
 
a = A1*2C / [–B ± (B2–4AC)0.5 ]   (12) 
 
Consider an analysis of the music data with a combination of Mahajan and Peterson's 
(1985) mixed influence model and Mansfield's (1961) method.   
 
 Internal-influence = δ0 + ΣδiXi + eb  (13) 
 
 External-influence = χ0 + ΣχiXi + ea  (14) 

 

 Number of potential users = η0 + ΣηiXi + eN (15) 

 
 For 534 songs, we did 534 regressions to estimate the external-influence, internal-
influence, and total number of potential users for each song (see table 1). See appendix A 
for the correlation-variance-covariance matrix. Fourteen songs had less than 3 weeks of 
adds, showing initial fast growth. Consistent with our hypotheses, all fourteen were 
Spitzer songs. Also, 41 songs yielded quadratic equations whose coefficients did not have 
real roots.  Thus, these 55 songs were removed from this version of the analyses. 
 
Table 1.  
The external-influence, internal-influence, and total number of potential users for 534 
songs. 
Song Internal-influence External-influence Total potential users 
1. (I Got That) Boom Boom 
      by BRITNEY SPEARS 

0.00007 0.10397 1237

2. (I Hate) Everything About You  
     by THREE DAYS GRACE 

-0.00003 n/a n/a

. 

. 

. 

.

.

.

. 

. 

. 

.

.

.
534. You've Got To Hide Your Love      
         by EDDIE VEDDER 

0.00128 0.04166 168

Note that for some songs, like #2, the computation of (B2–4AC)0.5 yields a complex root 
(not a real number), so external-influence and total potential users cannot be computed.  
 

Then, we run three more regressions to test whether internal-influence, external-
influence, and total number of potential users are significantly linked to song 
characteristics, namely artist's past hit songs and whether they appear in the Spitzer files. 
We expect songs by artists with more past hit songs or identified in the Spitzer files to 
show both greater external-influence and more potential users.   
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 Internal-influence = δ0 + δ1Artist_past_songs + δ2Spitzer + eb      (16) 
 External-influence = χ0 + χ1Artist_past_songs + χ2Spitzer + ea      (17) 
 Total potential users = η0 + η1Artist_past_songs + η2Spitzer + eN   (18) 
As shown in table 2 below, the diffusion curves showed mostly external-influence 
(0.346) with no significant internal-influence.  As expected, more radio stations played 
songs by artists that had more hit singles in the top 100 in the past year (8.4 radio stations 
per top 100 single on average).7  Likewise, almost 17 more radio stations played songs 
identified in the Spitzer files compared to other songs on average. Otherwise, Spitzer and 
artist's past songs had no significant effects on either internal-influence or external-
influence. 
 
Table 2. 
Ordinary least squares (OLS) regression models predicting 3 song diffusion curve 
parameters (external-influence, internal-influence, and total number of potential users). 
 
 3 OLS Regression models predicting 3 diffusion curve parameters 
Variable Internal-influence  External-influence  Total potential users  
Constant -0.002 0.346** 180.0***
 (0.004) (0.103) (5.5) 
Artist_past_songs 0.0002 0.027 +8.4***
 (0.0007) (0.084) (1.5)
Spitzer 0.003 0.272 +16.7* 
 (0.009) (0.309) (7.1)
 

Multi-level Diffusion Curves 
 Our new method uses a multi-level diffusion curve (MDC) rather than 534 single 
level diffusion curves to (a) model explanatory variables at all levels, (b) model the 
diffusion of multiple songs simultaneously, and (c) obtain more precise estimates.  First, 
we can add explanatory variables (Xi) directly into the diffusion curve regression as 
follows: 
 
Nt+1 – Nt = [A+ΣαiXi]+[B+ΣβiXi]Nt+[C+ΣγiXi]Nt

2+et    (19) 
 
With a multilevel model, we can model both song and time variables simultaneously, 
yielding the following equation. 
 N(t+1)s – Nts = (A00+Σα0xX0s+ΣϕzsZts) + (B1s+Σβ0xX0s+ΣκzsZts)Nts 

   + (C2s+Σγ0xX0s+ΣλzsZts)Nts
2 +ets+f0s                (20) 

Nts is the number of radio stations that have broadcast song s by week t. Similarly, N(t+1)s 
is the number of radio stations that have broadcast song s by week t+1. A00 is the grand 
mean intercept, while B1s and C2s are regression coefficients of Nts and Nts

2 respectively. 
X0s is a vector of x song-level explanatory variables while Zts is a vector of z time-level 
                                                 
7 Artist past songs was measured as the number of songs the artist had in the “Billboard Hot 100” chart. To 
avoid endogeneity, it is lagged one year.  
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explanatory variables.  The following are vectors of regression coefficients: α0x, ϕzs, β0x, 
κzs, γ0x, and λzs. The error terms (residuals) at the time and song levels are ets and f0s, 
respectively. Furthermore, B1s can be modeled as an overall regression coefficient and its 
degree of variation across different songs (also known as random level variation, B1s = 
B10 + f1s).  Likewise, C2s can be modeled as C2s = C20 + f2s, and any of the following 
vectors can have random level variation: β0x, κzs, γ0x, and λzs.  

Unlike Mansfield’s (1961) method which only allows explanatory variables at the 
song level (or more generally, the level of the entity being diffused), MDCs can also 
model explanatory variables at many levels, including the time level. Moreover, MDC 
can model interactions between song properties and time properties, or more generally, 
any cross-level interactions.   

An MDC analyzes the 534 songs in one model.  Hence, an MDC saves time by 
running only 1 regression rather than 534 regressions (one for each song) as in 
Mansfield’s (1961) method.  Also, as MDC allows lower level units (weekly adds, in this 
case) to have as few as one data point, songs with less than 3 weeks of data were 
included. Likewise, songs that yielded individual diffusion curves without real root 
solutions to the quadratic equation can likewise be included.  Thus, MDC uses all 
available information, unlike the single-level, two-stage regression model.  Moreover, 
using the full information of 534 songs simultaneously yields more precise estimates than 
534 piecemeal regressions on subsets of the data. 

We modeled songs' diffusion curves with the following multi-level specifications, 
using MLn software (Goldstein 1995, Rasbash and Woodhouse 1995). Ordinary least-
squares regressions tend to underestimate the standard errors of regression coefficients. In 
contrast, multi-level models separate unexplained error into time (level 1) and song (level 
2) components, thereby removing the correlation among error terms resulting from the 
nested data (time nested within songs).  

We begin with a variance components model to test if the variances are 
significant at each level. 
 N(t+1)s – Nts = A00+ets+f0s        (21) 
If f0s differs significantly from zero, then the diffusion curves differed significantly across 
songs.  The results showed significant variance at both the week level (97%) and the song 
level (3%).  Hence, the songs' diffusion patterns differed substantially. 
 We also tested the effect of song-level characteristics, specifically whether Spitzer 
songs differed from non-Spitzer songs, controlling for artists' past popularity. 
Furthermore, we can also model time-level explanatory variables such as Holiday season.  
As record labels hold major artist releases for the last quarter of the year, we expect that 
the holiday season would be positively linked to total potential users. 
 N(t+1)s – Nts = [A00+α1Spitzers + α2sArtist_past_songss + ϕtsHolidayts]  
  + [B1s+β1Spitzers +β2Artist_past_songss +κtsHolidayts]Nts 

  + [C2s+ γ1Spitzers + γ2Artist_past_songss + λtsHolidayts]Nts
2 +ets+f0s   (22)           

Table 3 Multilevel regression results predicting the number of radio stations newly 
adding each song per week. 
 
Predictor Regression  
Constant 6.001 *** 
 0.345  
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Top 100 hits in last year 3.904 *** 
 0.341  
Holiday season -2.693 *** 
 0.545  
Spitzer 1.458 ** 
 0.543  
Cumulative adds 0.043 *** 
 0.004  
Top 100 hits in last year * Cumulative adds -0.015 *** 
 0.003  
Holiday season * Cumulative adds 0.020 *** 
 0.006  
Spitzer * Cumulative adds -0.048 *** 
 0.005  
Cumulative adds2 -0.00022 *** 
 0.00001  
Top 100 hits in last year * Cumulative adds2 0.000003  
 0.000008  
Holiday season* Cumulative adds2 -0.00002  
 0.00002  
Spitzer* Cumulative adds2 0.00017 *** 
 0.00001  
Variance explained at the song level < 0.001  
Variance explained at the week level 0.124  
Total variance explained 0.120  

 
Extending the formulas for internal-influence, external-influence, and number of 
potential users (9, 10, and 12) to the multilevel model, we obtain the following equations. 
(For the total potential users to be a positive number, the ± from the quadratic formula 
must be a subtraction [–], thus the computations yield unique solutions.) 
 b = –[C2s+Σγ0xX0s+ΣλzsZts]        (23)  
               
 a = 2[A00+Σα0xX0s+ΣϕzsZts][C2s+Σγ0xX0s+ΣλzsZts]/[–(B1s+Σβ0xX0s+ΣκzsZts) 
       –([B1s+Σβ0xX0s+ΣκzsZts]2–4[A00+Σα0xX0s+ΣϕzsZts][C2s+Σγ0xX0s+ΣλzsZts])0.5]  
           (24) 
 
 N = [–(B1s +Σβ0xX0s+ΣκzsZts) – ([B1s +Σβ0xX0s+ΣκzsZts]2 –     
        4[A00+Σα0xX0s+ΣϕzsZts][C2s+Σγ0xX0s+ΣλzsZts])0.5 ] / 2[C2s+Σγ0xX0s+ΣλzsZts]  
           (25) 
   
Next, we compute the impact of each explanatory variable on internal-influence, 
external-influence, and total potential users (Chiu and Khoo 2005). Consider a 
computation of the effect of a discrete variable X (e.g., Spitzer with values 0 or 1). For 
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other explanatory variables (artist's past popularity and Holiday season), we set their 
values to their mean value (μ) for continuous variables (artist's past songs = 0.354) and to 
their median value (Mdn) for discrete variables (Holiday = 0). For internal-influence in 
Spitzer (=1) vs. non-Spitzer songs (=0) for example, we compute the following:     
 
bSpitzer=1 – bSpitzer=0  =  –(C2s+ γ1*(1) Spitzer=1 + γ2*μArtist_past_songs + λ*MdnHoliday ) 
       – –(C2s+ γ1*(0) Spitzer=0 + γ2*μArtist_past_songs + λ*MdnHoliday)   (27) 
The term γ1*(0) equals zero, and the following terms cancel out: C2s, γ2*μArtist_past_songs, 
and λ*MdnHoliday . Thus, only –γ1*(1) Spitzer=1 remains, yielding the result that Spitzer 
songs tend to have 0.000167 less internal-influence than non-Spitzer songs  
(– γ1 = – 0.00017).  Likewise, the computation of internal-influence during the Holiday 
season yields only the term, –λ*(1)Holiday=1. Hence, internal-influence during the holiday 
season is + 0.00002 more than otherwise (–λ = – [– 0.0000237] = + 0.0000237). For 
continuous variables, we compute the expected effect on internal-influence of a 10% 
increase in the explanatory variable to facilitate reader understanding, namely  
bx=(1.10*μ) – bx=μ . For artists' past sales, we compute the following. 
b Artist_past_songs =(1.10*μ) – b Artist_past_songs =μ 

 =   –(C2s+ γ1*MdnSpitzer + γ2*110%*μArtist_past_songs + λ*MdnHoliday ) 
  – –(C2s+ γ1* MdnSpitzer + γ2*μArtist_past_songs + λ*MdnHoliday)  (28) 
As before, the other terms cancel, leaving –γ2*110%*μArtist_past_songs + γ2*μArtist_past_songs or 
–γ2*10%*μArtist_past_songs. As μArtist_past_songs is not significant, artist's past songs have no 
significant effect on internal-influence. Similarly, we compute the expected effect of 
these explanatory variables on external-influence and total potential users (see Table 4 
and full computations in a spreadsheet at  
http://www.sscnet.ucla.edu/issr/da/datapickup/payola.zip).  
 
 Table 4. Multilevel model estimates of each explanatory variable's link to external-
influence, internal-influence, and total potential users  
 Multi-level Diffusion Curve Parameters 
Predictors Internal-influence External-influence Total potential users
No predictors 0.00015 0.023 308
Artist's past Top 100 hits (+10%)  0 + 0.001  0
Holiday season + 0.00002 – 0.010 + 14
Spitzer – 0.00017 + 0.001 + 41

 
 The MDC results were similar to the earlier results in the following three ways. 
First, external-influence is much larger than internal-influence on song diffusion across 
radio stations.  Second, artist's past songs did not affect internal-influence. Third, more 
radio stations tended to add songs identified in the Spitzer files than other songs, though 
the MDC estimates a much larger Spitzer effect of +41 radio station adds rather than +17 
in the earlier analysis.  
 The MDC results differed substantially regarding the other estimated effects. 
According to the OLS results, more radio stations played songs by artists that had more 
hit singles in the top 100 in the past year (8.4 radio stations per top 100 single on 
average).  However, this result was not significant according to the MDC results.  
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Moreover, both artist's past songs and Spitzer file association were linked to higher 
external-influence according to the MDC analysis.  Songs identified in the Spitzer file 
also showed lower internal-influence. 
 Lastly, the MDC tested the effect of time, specifically radio station adds during 
the holiday season.  As expected, radio stations tended to add more of these popular 
songs during the holiday season, 14 on average.  Furthermore, there was significantly less 
external-influence, and a bit less internal-influence during the holiday season. 
 To test for the robustness of these results, we also did a) MDC analyses on the 
data set without the 55 songs removed in the earlier data set, b) MDC analyses on the first 
95% of radio station adds per song, c) MDC analyses on the first 95% of radio station 
adds per song without the 55 songs, and d) OLS analyses on the first 95% of radio station 
adds per song.  All MDC results were similar, and all OLS results were similar.  Results 
are available upon request from the authors. 
 
Discussion and Conclusion 

In this study we developed a technique for modeling diffusion of multiple 
innovations. Compared to older techniques (Mansfield 1961, Mahajan and Peterson 1985, 
Valente 1993), this approach is more statistically efficient. More importantly, it allows 
testing of a larger range of hypotheses. This latter feature in particular should provide 
wide utility in diffusion studies as it allows simultaneous estimation of parameters at the 
levels of the innovation, the time, and the interactions between them. 

As we tested for payola with music data to demonstrate our method, we simplified 
it accordingly in three ways: fixed N, symmetric internal-influence curve, and 
independent innovations. First, we assume that the number of radio stations that might 
potentially add a song to its playlist, N, is fixed throughout the innovation’s diffusion.8 
One can relax this assumption and allow the number of potential adopters to vary over 
time as actors at-risk of adopting the innovation enter or exit the system. For instance, a 
firm (system) can hire more engineers (actors) who are then at risk to use calculators 
(innovation) (Randles 1983) or the world (system) can have newly independent countries 
(actors) who are at risk of joining the United Nations (innovation) (Mahajan and Peterson 
1978). A related assumption is that N is fixed because the system has discrete boundaries. 
The usual way in which this assumption is relaxed is to add physical space as a 
dimension of diffusion (Mahajan and Peterson 1979). In addition to viewing space as 
kilometers between two locations, one can view distance metaphorically, as in the Blau 
space between actors, a gradient of cross-elasticity of demand between goods, or the path 
lengths between social network cliques. For instance, people in an area could join a riot 
and then that riot could spread into adjacent areas (Grannovetter 1978). Likewise, in 
radio it is common for a song to become popular in one format (e.g. alternative rock) and 
then crossover to another (e.g. Top 40).  

Another assumption is that we use a linear form of the second term in equation 5. 
This assumes that an internal-influence curve would appear symmetrical, with the 
inflection point occurring at about half of N. Meanwhile, diffusion in some systems 

                                                 
8 In fact stations do enter Mediabase during the study, both because the station “flips” to playing a new 
kind of music and because Mediabase continually expands the scope of its coverage. We consider a station 
to be left-censored relative to a particular song if it enters Mediabase after that song has begun its diffusion. 
Since such left-censorship is relatively rare, we drop such cases from the analysis. 
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follow the Gompertz (1825) mortality function, where the term is not N-Nt, but ln(N)-
ln(Nt ). This produces an inflection point at about a third of N.  

We modeled songs (innovations) as independent of one another. However, 
innovations can substitute for one another if an actor has scarce resources (including 
space) or uses them for similar purposes (Mansfield 1961). On the other hand, 
innovations can complement one another if using one innovation lowers costs for using 
the next one, as with a learning curve (Randles 1983).    

Fortunately, methods for relaxing all of these assumptions are well-documented 
(Randles 1983, Mahajan and Peterson 1985). Thus, our model can be extended to include 
them.  

Future research might extend our model to the unaddressed issue of cross-
classified data. Modeling cross-classification can estimate how diffusion patterns are 
related not only to traits of innovation, but also to traits of actors and even interactions 
between actor and innovation traits. For instance, imagine that one had data on 
individuals and on news stories. One can use MDC to correlate traits of the news items, 
such as volume of media coverage and salaciousness, to a, b, and N. Ideally, one could 
simultaneously correlate them with actors’ media exposure and interact this actor level 
trait with the innovation’s volume of media coverage. Likewise, one could show not only 
which record labels (an innovation trait) pay bribes, but which radio chains (an actor 
trait) take bribes. Such an extension of the technique is beyond the scope of this paper but 
it presents a powerful possibility.  

As to the specific case of payola, we showed that documented instances of payola 
had diffusion patterns with greater external-influence after controlling for other factors 
such as artist's past songs and holiday sales period. This implies that when one does not 
have documentation of payola, one can infer its probable existence by running an MDC 
using the data set of Spitzer songs and a new set of five or more songs from a given 
record company to be tested (test songs; see Tabachnick & Fidell [2006] regarding the 
statistical benefits of 5 or more data points in a comparison group). The specification is 
identical to the MDC specification above except that the Spitzer variable is replaced by a 
new variable Test-songs.  A significant negative effect of the variable Test-songs on the 
external-influence parameter suggests that the test songs show significantly less payola 
than the Spitzer songs.  A non-significant or positive result suggests substantial payola. 

By its nature, payola is unlikely to be extensively documented, let alone publicly 
available. Furthermore, aggressive prosecutors come along only intermittently and when 
they do, their revelations about payola necessarily (and intentionally) have reflexivity 
with the object of their inquiry. In contrast, statistical analysis of readily available 
diffusion data offers an inexpensive alternative. The commercially available Mediabase, 
Nielsen/BDS (Broadcast Data Systems), and ASCAP/Mediaguide datasets all offer 
detailed and reliable data on the airplay of American radio stations. Comparable datasets 
exist for radio in other countries. By examining these data, one can estimate the 
prevalence of payola across time and across different parts of the music industry.  

Regulators, prosecutors, and other interested parties can apply this method as a 
policy tool for gathering prima facie evidence of legal violations. Attorney General 
Spitzer extracted draconian consent decrees from the record labels and radio chains, and 
the Federal Communications Commission is negotiating its own consent decrees. 
However, these decrees cannot enforce themselves. Indeed, if the law were self-
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enforcing, payola would have ceased after Congress banned the practice in 1960. 
Although the state seemingly has substantial subpoena power to discover payola, this 
power is limited both by law and by practical considerations. Legally, subpoenas cannot 
be used for fishing expeditions. Instead, a subpoena requires probable cause, wherein the 
state has a reasonable suspicion that a specific crime has occurred. Practically, 
interpreting the documents produced by a subpoena is too labor-intensive to be taken on 
lightly, and one cannot easily tell if the subject is withholding evidence.  

The technique described in this paper provides an efficient, non-invasive 
mechanism through which the state can estimate where and when payola has occurred. 
This technique requires no subpoenas and relatively little labor. One social scientist and a 
commercial database subscription are sufficient to monitor the entire radio industry. Sets 
of songs flagged by such monitoring as having a suspiciously high level of unaccounted 
external-influence could then be referred for more extensive traditional investigation. 
Such a regime would solve the key policy problem of payola, how to detect it efficiently. 

 
References 
Adler, Moshe. 1985. “Stardom and Talent.” American Economic Review 75: 208-212. 

Banerjee, Abhijit V. 1992. “A Simple Model of Herd Behavior.” Quarterly Journal of 
Economics 107: 797-817. 

Bikhchandani, Sushil , David Hirshleifer, and Ivo Welch. 1992. “A Theory of Fads, 
Fashion, Custom, and Cultural Change as Informational Cascades.” Journal of 
Political Economy 100: 992-1026. 

Caves, Richard E. 2000. Creative Industries; Contracts between Art and Commerce. 
Cambridge, MA: Harvard University Press. 

Coase, R. H. 1979. “Payola in Radio and Television Broadcasting.” Journal of Law and 
Economics 22: 269-328.  

Coleman, James S., Elihu Katz, and Herbert Menzel. 1966. Medical Innovation. 
Indianapolis, IN: Bobbs-Merrill Company. 

Dannen, Fredric. 1990. Hit Men: Power Brokers and Fast Money Inside the Music 
Business. New York: Time Books. 

Dawkins, Richard. 1976. The Selfish Gene. Oxford: Oxford University Press. 

Dobbin, Frank and Frank R. Sutton. 1998. “The Strength of a Weak State: The Rights 
Revolution and the Rise of Human Resources Management Divisions.” American 
Journal of Sociology 104: 441-476. 

Gladwell, Malcolm. 2000. The Tipping Point: How Little Things Can Make a Big 
Difference. Boston: Little, Brown, and Company. 

Goldstein, Harvey. 1995. Multilevel Statistical Models. Sydney: Edward Arnold. 

Gompertz, Benjamin. 1825. “On the Nature of the Function Expressive of the Law of 
Human Mortality, and on a New Mode of Determining the Value of Life 
Contingencies.” Philosophical Transactions of the Royal Society of London 115: 
513-583.  



 18

Granovetter, Mark. 1978. “Threshold Models of Collective Behavior.” American Journal 
of Sociology 83: 1420-1443. 

Haveman, Heather A. “Follow the Leader: Mimetic Isomorphism and Entry Into New 
Markets.” Administrative Science Quarterly 38: 593-627. 

Henisz, Witold J., Bennet A. Zelner, and Mauro F. Guillén. 2005. “The Worldwide 
Diffusion of Market-Oriented Infrastructure Reform, 1977-1999.” American 
Sociological Review 70: 871-897. 

Hirsch, Paul M. 1972. "Processing Fads and Fashions: An Organization-Set Analysis of 
Cultural Industry Systems." American Journal of Sociology 77: 639-659.  

Katz, Michael L. and Carl Shapiro. 1985. “Network Externalities, Competition, and 
Compatibility.” American Economic Review 75: 424-440. 

Kay, Steven M. 1993. Fundamentals of Statistical Signal Processing, Volume I: 
Estimation Theory. Upper Saddle River, NJ: Prentice Hall. 

Lynch, Joanna R. and Greg Gillispie. 1998. Process and Practices of Radio 
Programming. Lanham, MD: University Press of America. 

Mahajan, Vijay and Robert A. Peterson. 1978. "Innovation Diffusion in a Dynamic 
Potential Adopter Population." Management Science 24: 1589-1597. 

Mahajan, Vijay and Robert A. Peterson. 1979. "Integrating Time and Space in 
Technological Substitution Models." Technological Forecasting and Social 
Change 14: 127-146. 

Mahajan, Vijay and Robert A. Peterson. 1985. Models for Innovation Diffusion. Newbury 
Park, CA: Sage Publications.  

Mansfield, Edwin. 1961. “Technical Change and the Rate of Imitation.” Econometrica 
29: 741-766. 

Chiu, Ming M., and Lawrence Khoo. 2005. “A New Method for Analyzing Sequential 
Processes: Dynamic Multi-Level Analysis.” Small Group Research 36: 600-631. 

Pfeffer, Jeffrey and Gerald R. Salancik. 1978. The External Control of Organizations: A 
Resource Dependence Perspective. New York: Harper and Row. 

Randles, F. 1983. “On the Diffusion of Computer Terminals in an Established 
Engineering Environment.” Management Science 29: 465-475.  

Rasbash, Jon and Woodhouse, Geoff. 1995. MLn Command Reference. London: 
Multilevel Models Project, Institute of Education.  

Rogers, Everett M. 2003. Diffusion of Innovations [5th ed.]. New York: Free Press. 

Ryan, Bryce and Neal C. Gross. 1943. “The Diffusion of Hybrid Seed Corn in Two Iowa 
Communities.” Rural Sociology 8: 15-24. 

Schelling, Thomas. 1971. “Dynamic Models of Segregation.” Journal of Mathematical 
Sociology 1: 143-86. 

Slichter, Jacob. 2004. So You Wanna Be a Rock & Roll Star. New York: Broadway 
Books. 



 19

Tabachnick, Barbara G., & Fidell, Linda. S. 2006. Using multivariate statistics [5th ed.]. 
Boston: Allyn & Bacon.  

Tarde, Gabriel de. 1903. [trans.] Elsie Clews Parson. The Laws of Imitation. New York: 
H. Holt and Company. 

Thompson, James D.  1967.  Organizations in Action:  Social Science Bases of 
Administrative Theory.  New York: McGraw-Hill. 

Tolbert, Pamela S. and Lynne G. Zucker. 1983. "Institutional Sources of Change in the 
Formal Structure of Organizations: The Diffusion of Civil Service Reform, 1880-
1935." Administrative Science Quarterly 28: 22-39. 

Valente, Thomas W. 1993. "Diffusion of Innovations and Policy Decision-Making." 
Journal of Communication 43: 30-45.  

Vogel, Harold. 1998. Entertainment Industry Economics: A Guide for Financial Analysis. 
Cambridge: Cambridge University Press. 



 20

Appendix A: Summary statistics and ancillary results 
 
Table of summary statistics  
Variable  Mean  S. D. Min Median  Max
Song code 272 154 1 272 534
Artist code 198 117 1 189 420
Station code 431 248 1 433 852
Number of radio stations newly 
adding each song per week 6 10 1 2 200
Cumulative adds 158 110 1 143 610
Top 100 hits in last year by artist 0.374 0.863 0 0 6
Holiday season 0.225 0.417 0 0 1
Spitzer file 0.310 0.462 0 0 1

 
Correlation-variance-covariance matrix 
 Variable 1 2 3 4 5

1 Number of radio stations newly 
adding each per song per week 96.22 -125 -0.04 0.54 -0.11

2 Cumulative adds -0.12 12004 1.75 17.75 1.98
3 Holiday season -0.01 0.04 0.17 0.05 -0.02
4 Top 100 hits in last year per artist 0.06 0.19 0.13 0.74 -0.04
5 Spitzer file -0.02 0.04 -0.10 -0.09 0.21
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Appendix B: Associated Data, Code, and Documents 
 
http://www.sscnet.ucla.edu/issr/da/datapickup/payola.zip 
 
File Description 
EMI.EV.PDF Original evidentiary documents from the 

office of the NY Attorney General - EMI 
ENTERCOM.EV.PDF Original evidentiary documents from the 

office of the NY Attorney General - 
Entercom 

SONY.EV.PDF Original evidentiary documents from the 
office of the NY Attorney General - Sony 

UNIVERSAL.EV.PDF Original evidentiary documents from the 
office of the NY Attorney General - 
Universal 

WARNER.EV.PDF Original evidentiary documents from the 
office of the NY Attorney General - 
Warner 

SPITZER.MDB Raw data based on the evidentiary 
documents listed above 

SPITZER.PDF Codebook for SPITZER.MDB 
PAYOLA_DATA.TXT Cumulative adoption histories for every 

song mentioned in SPITZER.MDB 
PAYOLA_DATA.PDF Codebook for PAYOLA_DATA.TXT 
PAYOLA_MLN.TXT MLn program for use with 

PAYOLA_DATA.TXT data 
MUSIC.CORRUPT.XLS Spreadsheet with automatic computations 

for Payola regressions.  You will need to 
enter the multilevel diffusion curve 
regression coefficients and the mean or 
median of the predictors. 

 




