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1 Introduction

Formal demographic models often relate individual behavior to population
dynamics. For example, the renewal equation connects individuals’ fertility
and mortality to changing population structure. Indeed, much of demo-
graphic research requires connecting some micro-level behavior with macro-
level outcomes. However, our demographic models typically assume addi-
tivity, that is, transition rates do not vary with features of the population.
When individuals’ actions or choices are interdependent, macro-level pat-
terns are not simply aggregates of micro-level characteristics and behavior
(Coleman 1994; Granovetter 1978). There are different ways one can model
interdependent behavior, including threshold, contagion, and epidemic mod-
els. All these models rest on two-way interaction: individual actions may
be influenced by the actions of others who act in a given way, while changes
in individual behavior alter the makeup of the population. These social in-
teraction models account for the ”emergence” of collective properties from
the behavior of individuals, and can also explain why the same individuals
may experience a wide range of social outcomes, depending on the structure
of their interaction. In recent years, population researchers have applied
interactions-based models in a number of areas of research, from studies of
fertility transition to patterns of assortative mating (e.g., Kohler 2001; Gold-
stein and Kenney 2001).

One area where we observe interdependent behavior is in the study of
neighborhood formation and change. Any person who moves is both respond-
ing to neighborhood composition and also (by leaving one neighborhood and
entering another) changing neighborhood composition. Schelling (1971, 1972,
1978) laid the conceptual groundwork for modeling the relationship between
individual preferences and behavior on the one hand and the evolution of
neighborhoods on the other. Using rudimentary computational models ap-
plied to artificial agents, he showed how the preferences of individuals about
where to live give rise to (often unanticipated) aggregate patterns of residen-
tial segregation. These patterns, moreover, may be at odds with the majority
of individuals’ preferences.

Schelling’s work assumed that people respond to neighborhoods based
on a threshold, or “tipping” function. More recently, Bruch and Mare (2006)
extend Schelling’s work to examine the implications of alternative assump-
tions about how individuals evaluate neighborhoods (based on their race-
ethnic composition) for aggregate patterns of residential differentiation. They
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couple their model with survey data to determine what assumptions about
individual preferences are most plausible.

Schelling and Bruch and Mare rely on agent-based (microsimulation)
models to draw inferences about the relationship between individuals’ choices
about where to live and aggregate patterns of segregation. Agent-based mod-
eling, which provides a flexible framework for capturing systemic properties
of interacting individuals, has grown in popularity in recent years. But agent-
based models, despite their power to model complex situations, are in them-
selves complex structures and the key determinants of their dynamic behavior
are often hard to understand and distill into simple conclusions.

One can also capture the dynamic properties of social interactions
through an analytic model. Bruch and Mare formulate a simple, stylized
Markov chain model to capture the key features of their agent-based models.
In this Markovian model, individual preferences in the form of probabili-
ties of moving or staying are functions of neighborhood composition, and the
equilibrium states of the model represent possible macrolevel patterns of seg-
regation (or its absence). Here we present the results of a complete analytical
treatment of the equilibrium properties of this model and some extensions.
Two results are especially interesting. First, the analytics yield an exact
condition for the minimum strength that individual preferences must have
in order to yield stable segregation patterns. Thus we can relate observed
preferences to observed macrolevel patterns of differentiation. Second, the
analysis shows that under Schelling-type rules, segregation is the only stable
equilibrium possible.

We show that simple formal models have the potential to usefully illu-
minate the relationship between individual choices and collective population-
level patterns. In the conclusion, we outline next steps and future directions
for this line of work.

Groups, Neighborhoods and Preferences

Groups and Neighborhoods

We are interested in preferences that express a tendency for individuals to
live with other individuals with whom they identify. Individuals may iden-
tify with others along many distinct social or economic dimensions, including
income, wealth, sexual preference, political views, religious beliefs, and race
or ethnicity. An axis of identification that is of considerable current interest
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is age, illustrated by the rise of communities with age-defined residency poli-
cies and a parallel movement of older people out of their long-time residential
neighborhoods. In our model, we assume that one or more such criteria are
used to define two distinct groups and each individual identifies herself as a
member of one group. We are interested in the distribution of individuals
over spatially defined and distinct neighborhoods. Each individual’s pref-
erence for living in a neighborhood depends on the fraction of same-group
individuals who live there. This preference is expressed as a probability that
an individual will choose a neighborhood to live in. It is important to note
that these are probabilities: a strong preference does not translate into cer-
tain behavior.

Local and Global Conditions

A central idea here is that local conditions result in changes to the global dis-
tribution of individuals. Here, local means within a residential neighborhood
whereas global means over all neighborhoods. The essential features of a
local-global interaction can be nicely demonstrated in a model that has only
two neighborhoods that we denote by numbers 1,2. There are two groups,
denoted A, B and at a particular time (say an annual census) there is a global
distribution of people in these groups. Globally, a fraction pA of all group A
people and a fraction pB of all group B people live in neighborhood 1; the
others are in neighborhood 2. But what matters to an individual is local
information: the fraction of people in a neighborhood that is of the same
type. Thus a member of group A evaluates neighborhood 1 in terms of the
local proportion, f 1

A, of group A residents in that neighborhood.
The relationship between the global and the local proportions depends

on the total numbers of the two groups. We suppose that there are NA

individuals in group A and NB individuals in group B, and define the ratio
K = (NB/NA); we use the convention that K > 1 (simply by letting A be
the group with smaller total size). Writing f 1

A, f 2
A for the fractions of group

A individuals within neighborhoods 1, 2 respectively,

f 1
A =

pANA

pANA + pBNB

=
pA

pA + KpB

, (1)

and similarly

f 2
A =

(1− pA)

(1− pA) + K(1− pB)
.
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The fraction of group B individuals is just f 1
B = 1 − f 1

A in neighborhood 1,
and is f 2

B = 1 − f 2
A in neighborhood 2. These equations tell us how local

conditions change with the global distribution of people.
One feature of this local-global relationship is that when the two groups

have unequal sizes, K > 1, there is a dilution of the effect of a global shift on
local frequencies. Qualitatively, if A is less numerous than B, a small global
shift of A individuals has a small effect on the local frequencies of A. More
formally, equation (1) shows that f 1

A ≈ pA/(KpB) when K is large: as K
becomes larger, a change in global frequency of group A has a smaller effect
on the local frequency f 1

A. This dilution effect features in our results below.

Preferences and Probabilities

We assume that individuals have a preference for a neighborhood that is
determined by the proportion of people living there who belong to their own
group. Preferences are not probabilities of action but are simply weights that
need to be converted into probabilities. An individual who knows that the
local frequency of her own group in a particular neighborhood is f will assign
a preference weight R(f) to that neighborhood. In this paper we consider
monotonic increasing preferences,

R(f) = eb f , with b > 0. (2)

The preference parameter b measures the strength of the tendency to asso-
ciate with one’s own-group.

An individual translates preferences into probabilities by comparing
neighborhoods. Thus a group A individual who knows that the group A
frequencies in neighborhoods 1, 2 are f 1

A, f 2
A will choose neighborhood 1 with

a probability

π1
A =

R(f 1
A)

R(f 1
A) + R(f 2

A)
=

eb f1
A

eb f1
A + eb f2

A

. (3)

A group A individual chooses neighborhood 2 with probability π2
A = (1−π1

A).
The choice probability π1

B for group B individuals is defined similarly,
but using the local frequencies f 1

B = (1 − f 1
A) and f 2

B = (1 − f 2
A); a little

algebra with (3) shows that

π1
B =

R(f 2
A)

R(f 2
A) + R(f 2

A)
=

e−b f1
A

e−b f1
A + e−b f2

A

.
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Of course, π2
B = (1 − π1

B). Given the local frequencies at the start of one
period (say a year), these choice probabilities are the probabilities that an
individual will move, during the period, to one or other neighborhood. Con-
sequently these choice probabilities determine the global frequencies at the
start of the next period.

The choice probability π1
A depends on the difference between the local

group frequencies, x = (f 2
A−f 1

A). Because local frequencies range from 0 to 1,
their difference ranges from −1 to +1. An important feature of equation (3)
is that the choice probabilities are never either zero or one, regardless of the
difference in local conditions, so long as the preference parameter b in (2) is
finite. Fig. 1 illustrates the change in choice probability π1

A from (3) as a
function of the local difference x = (f 2

A− f 1
A). The choice probability is sym-

metric around x = 0, equals 1/2 when x = 0, and falls as x increases. Even
when x = 1, meaning that all group A individuals are in neighborhood 2,
there is a nonzero probability of [1/(1+exp(−b)] < 1 that a group A individ-
ual will choose neighborhood 2 rather than neighborhood 1. An important
take-home message is that complete segregation of groups into distinct neigh-
borhoods is not ordained by the assumptions of this model: there is always
a nonzero probability that an individual will choose a neighborhood that has
a lower local frequency of its own group.

Dynamics: Process and Question

Dynamic Process

Say that at time t the overall (global) proportions of group A, respectively
B, individuals living in neighborhood 1 are pA(t), pB(t). Equation (1) turns
these into the local frequencies of groups A and B. Equation (3) turns these
into the choice probabilities π1

A(t), π1
B(t). Between times t and t + 1, group

A individuals may move, choosing neighborhoods 1 or 2 with probabilities
π1

A(t) and (1 − π1
A(t)). Over the same interval, group B individuals choose

neighborhoods 1 or 2 with probabilities π1
B(t) and (1− π1

B(t)). Thus at time
t + 1, the global frequencies of A and B are

pA(t + 1) = π1
A(t), pB(t + 1) = π1

B(t). (4)

These steps define a dynamic that changes global proportions pA(t), pB(t)
into new global proportions pA(t + 1), qA(t + 1).
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A nice feature of (3) is that the choice probability π1
A(t) depends only

on the difference between local frequencies: with x(t) = fA
2 (t) − fA

1 (t) we
have

π1
A(t) =

1

1 + e−b x(t)
, π1

B(t) =
1

1 + eb x(t)
. (5)

One time step in the dynamics takes these values into pA(t + 1) = π1
A(t),

qA(t + 1)π1
B(t), which via (3) determine the new local frequencies at t + 1,

and hence the new difference in local frequencies. Formally the dynamics can
be summarized by an equation,

x(t + 1) = H(x(t)), (6)

where the function H can be written explicitly by putting together all the
transformations (see Appendix). So the dynamics here are effectively one-
dimensional and can be analyzed entirely in terms of the difference x(t) in
local frequencies.

Questions

The difference x(t) in local frequencies measures exactly what we are after,
the amount of segregation. When x(t) = 0 there is no segregation. When
x(t) = ±1 there is complete segregation because all group A individuals
are in one of the two neighborhoods. Note that segregation is symmetric in
x(t), in the sense that x = −0.2 and x = +0.2 represent the same level of
segregation. The dynamic equations are also symmetric, as they should be,
in that H(−x) = H(x) in equation (6) (see Appendix for details). In our
simple model we care only about the difference in neighborhood composition,
so from here on, we restrict our discussion to values of x(t) ≥ 0.

With the formal dynamics in hand, we want to answer three sets of
questions.

(1) What are the equilibrium levels of segregation in the model? An equi-
librium is a value x0 that is maintained under the dynamics, so if
x(t = 1) = x0 then x(t) = x0 for all t > 1. In particular, are there
equilibria without segregation (x0 = 0), or with segregation (x0 > 0),
and can there be more than one equilibrium?

(2) Are the equilibria dynamically stable? If we perturb local frequencies
away from an equilibrium x0 (i.e., set x(t = 1) = x0+d with nonzero d),

6



then do the dynamics take the frequencies back towards the equilibrium
x0 (stability) or away from it (instability). It is useful to distinguish
local stability, in which we return to x0 if the initial change d is small,
from global stability, in which we return to x0 regardless of the initial
change d.

(3) How do these properties depend on the preference strength b and the
relative group size K?

Results

Equilibrium conditions

An equilibrium x0 is maintained under the dynamics, so from (6) all equilibria
are solutions of

x0 = H(x0). (7)

Geometrically, draw a graph with values of x from 0 to 1 on the horizontal
axis. An equilibrium is the intersection of the line y1 = x with the curve
y2 = H(x). In the Appendix we show that H(x) equals zero at x = 0,
increases as x increases from 0 to 1, and reaches a maximum value H(1) < 1.
Hence a no-segregation equilibrium x0 = 0, always exists. An equilibrium
with segregation can only exist if the slope of H(x) at x = 0 is greater than
1; in that case there must be an equilibrium x0 between 0 and 1.

Populations of Equal Size

For clarity, start with the case when groups A and B are equal in total
numbers so K = 1. An equilibrium with segregation exists only when the
preference strength

b > 2. (8)

Fig. 2 illustrates, first, that when b < 2 only a no-segregation equilibrium
exists, and is both locally and globally stable. In this case the curve of H(x)
lies below the 45 degree line everywhere. Fig. 2 also illustrates the case
when b > 2, when H(x) rises faster than the 45 degree line near x = 0 and
then must fall below it as x gets large. When b > 2 there are two equilibria.
The no-segregation equilibrium at x = 0 exists but is unstable: if we start at
x = 0 any global shift in either group triggers local responses that eventually
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increase the level of segregation. These changes eventually drive the global
and local distributions to a new equilibrium at x0 > 0, as shown in Fig. 2.
The equilibrium with segregation is now locally and globally stable.

Thus segregation can only be maintained if the strength of preference is
high enough. The preference strength b is also the elasticity of the preference
function R, and for segregation has to be greater than 2.

Populations of Unequal Size

When group B is K times as numerous overall as group A, an equilibrium
with segregation exists only when

b > 2 +
(K − 1)2

2K
. (9)

Fig. 3 illustrates how this condition operates when K = 3 so the critical
value in (9) is 2.67. First, we try b = 2.3, which is sufficient for stable
segregation with groups of equal size. When K = 3 this preference strength
is not enough and only the no-segregation equilibrium exists and is stable.
Fig. 3 illustrates an equilibrium with stable segregation when preference
strength is above 2.67.

Writing the critical preference strength as in (9) shows that (8) is the
special case for K = 1, and also that the critical strength increases with the
ratio K of total group sizes. This increase results from the dilution effect
that we discussed earlier. As one group increases in total number relative to
the other, global movements have less effect on local frequencies and it takes
a stronger response to maintain segregation.

Extensions

Schelling and threshold preferences

The Schelling model uses a preference function R(f) as illustrated in Figure
4. The value of zero for the first segment matters but the specific value
(here 0.5) for the above-threshold preference is immaterial (the value could
be 1, for example). Given the own-group frequencies f 1

A and f 2
A for the 2

neighborhoods, this preference function can be used to find the corresponding
choice probabilities in equation (1).
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Figure 5 illustrates what happens by enumerating the selection prob-
ability s1

1 for different values of f 1
A and f 2

A. It is clear that there is a no-
segregation equilibrium at (f 1

A, f 2
A) = (1/2, 1/2) and two edge equilibria with

complete segregation at (1,0) and (0,1). Figure 5 shows a line through (1/2,
1/2) – any perturbation away from the no-segregation equilibrium along this
line is unstable. If you move up and left from (1/2, 1/2), in the first step
you get pA = 1 and pB = 0 and thus end up at the (1,0) edge equilibrium.
Conversely if you move down and right. Thus the no-segregation equilibrium
is locally unstable in Schelling’s model and the system will always head for
an edge equilibrium.

The Schelling model with nonzero probabilities has a preference func-
tion such as the one in Figure 6. For these numerical values Figure 7 displays
the choice probabilities. As before we have the no-segregation equilibrium
and the 2 edge equilibria. But consider what happens when you perturb away
from (1/2, 1/2). If you move up and left from (1/2, 1/2), in the first step you
get pA = 1/3 and pB = 2/3. Therefore we have two additional locally stable
equilibria indicated by the diamonds in Figure 7. Now the edge equilibria
are unstable, as you can see by considering a perturbation away from (1,0)
or (0,1).

This analysis can be extended to more general threshold preferences
with many jumps. For example, when R(f) has jumps at 0, 1/4, 1/2, 3/4,
each jump of size 1/4, one can make a plot just like Figure 7, but with the
square divided into 16 smaller blocks. Again, one finds equilibria at (1/2,
1/2), (1,0) and (0,1). Again the (1/2, 1/2) equilibrium is locally unstable,
but this time a perturbation takes the system to a new locally stable internal
equilibrium at (2/5, 3/5) or (3/5,2/5). In this case, interestingly, the edge
equilibria at (1,0) and (0,1) are also locally stable.

Conclusions

We have shown that a simple analytic model may yield useful insights into
segregation dynamics. Most notably, we demonstrate that, in a world where
individuals’ preferences follow a linear continuous function, a preference
strength of b ≥ 2 is necessary to sustain segregation. This is consistent with
corrected results from Bruch and Mare (2006). We have also shown that,
as the relative size of groups differs (that is, K > 1) more discriminatory
preferences are needed to sustain segregation than when groups are of equal
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size. The reason for this is as follows: any movement of type A individuals
in or out of neighborhoods must generate a corresponding change in neigh-
borhood desirability, which is a function of local proportions f 1

A and f 2
A. As

K increases (and the size of group A declines relative to group B) movement
by group A affects the global distribution of group A across neighborhoods,
pA, more than it affects the local representation of group A. Bruch and Mare
(2006) show that segregation is maintained when changes in the size of a
population at risk of moving into an area are offset by changes in the relative
desirability of that area. In this case, we see that as K increases, b must also
increase to produce a corresponding change in neighborhood desirability.

Bruch and Mare (2006) point out that the estimated preferences may be
asymmetric, so that group 1 has preference function R1(f) (say, a quadratic
f(1 − f)) and group 2 has a different preference function R2(f) (say an
exponential, ebf ). In this case the arguments above show that the Markov
chain recursion is 2-dimensional.

A model with many neighborhoods can be formulated with the same
structure as the one in this paper. We find that the instability condition
(9) also guarantees instability of the no-segregation equilibrium in this case.
We have not yet characterized the equilibria with segregation but further
development of this case should be interesting
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Appendix

We use the notation in the text and present mathematical details behind our
results. The difference x(t) between neighborhoods in own-group frequency
follows text equation (6). We write the function H first as a function of the
global proportions

H(pA, pB) = K
M(pA, pB)

D(pA, pB)
, (A-10)

where the functions M, D are given by

M(pA, pB) = pB(1−pA)−pA(1−pB), D(pA, pB) = (pA+KpB)[(1−pA)+K(1−pB)].
(A-11)

The dynamics use the fact that the right side depends only on x(t),

x(t + 1) = K
M(pA(t + 1), pB(t + 1))

D(pA(t + 1), pB(t + 1))
,

= H (pA(x(t)), pB(x(t))) . (A-12)

At an equilibrium

x = H (pA(x), pB(x)) .

Local stability : suppose there is an equilibrium at x0. Local stability requires
that ∣∣∣∣∣

(
dH

dx

)

x=x0

∣∣∣∣∣ < 1. (A-13)

We now prove some facts that will be useful in examining the equilibria
of the Markov chain. Text equation (4) and (5) relate pA(x(t)) and pB(x(t))
to x(t). Leaving out the t,

pA(−x) = 1− pA(x) = pB(x) = 1− pB(−x). (A-14)

It follows that pA(0) = pB(0) = 1/2.
Next observe that

D(x) = (p(x) + K pB(x)) (pA(−x) + K pB(−x)) ,

= (pA(x) + K pB(x)) (pB(x) + K pA(x)) , (A-15)

= K + (K − 1)2 pA(x)pB(x).
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The first of these equations shows that D(x) = D(−x) and D(0) = 0. The
last equation tells us that when K = 1 we have D(x) = K = 1 for all x, and
when K ≥ 1 that D(x) > K ≥ 1 for all x.

Turning to M(pA, pB) we have

M(x) = pB(x)pA(−x)−pA(x)pB(−x) = p2
B(x)−p2

A(x) = 1−2pA(x). (A-16)

Therefore M(x) = −M(−x), M(0) = 0, and M(1) = [1 − 2pA(1)] < 1 (the
last follows because pA(1) < (1/2) from text equation (5)).

These properties imply that H(x) = K M(x)/D(x) = −H(−x). The
slope of H is

dH

dx
=

1

D

dM

dx
− H

D

dD

dx
. (A-17)

Differentiation yields

D
dH

dx
= KbpB

[
2 +

K(K − 1)2(pA − pB)2

D

]
> 0, (A-18)

which shows that for x ≥ 0, H is increasing in x. When x = 1 we have

H(1) = K M(1)/D(1) ≤ M(1) < 1, (A-19)

where we have used the fact that D(1) ≥ K and M(1) < 1, as shown earlier.
For any value of K the slope of H(x) at x = 0 is

(
dH

dx

)

x=0

= K

(
dM

dx

)

x=0

=
2 bK

(K + 1)2
. (A-20)

This and the local stability condition (A-13) at x = 0 yield text equation (8)
and (9). Global stability follows from local stability by looking at the geom-
etry of the curve H(x) and the resulting signs of x(t + 1)− x(t).

Figure Legends

Fig. 1. The probability π1
A that a group A individual chooses neighborhood

1, computed from text equation (5) as a function of the difference x = f 2
A−f 1

A

in local frequencies of group A. Note that π1
A > 0 even when x = 1.

Fig. 2. Equilibria with equal group sizes (K = 1). The blue line is the
45 degree line, say y = x. The magenta line is the function H(x) computed
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for preference strength b = 1.5 which is below the threshold, so there is only
one intersection between the lines at the no-segregation equilibrium x = 0.
The red line is the function H(x) computed for preference strength b = 2.3
which is above the threshold, so there are two intersections between the lines,
the unstable no-segregation equilibrium at x = 0 and stable segregation at
x 0.58.

Fig. 3. Equilibria with unequal groups, when group B is K = 3 times
as numerous as group A. The blue line is the 45 degree line, say y = x.
The magenta line is the function H(x) computed for preference strength
b = 2.3 which is above the threshold for K = 1 but below the threshold
for K = 3, so there is only one intersection between the lines at the no-
segregation equilibrium x = 0. The red line is the function H(x) computed
for preference strength b = 2.97 which is above the threshold for K = 3,
so there are two intersections between the lines, the unstable no-segregation
equilibrium at x = 0 and stable segregation at x 0.64.

Fig. 4. A threshold preference function, based on Schelling’s work, that
jumps from weight zero to weight 1 as the local frequency rises above 0.5.

Fig. 5. Choice probabilities (large numbers on graph) as a function of
local frequencies, using the preference function in Fig. 4.

Fig. 6. A different threshold preference function, based on Schelling’s
work, that jumps from weight 0.5 to weight 1 as the local frequency rises
above 0.5.

Fig. 7. Choice probabilities (large numbers on graph) as a function of
local frequencies, using the preference function in Fig. 5.
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Fig. 4. SCHELLING PREFS I
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Fig. 6. SCHELLING PREFS II
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